Experimental and Numerical Approaches to Optimize Heat Blocking Efficiency in Intumescent Coatings

Main Article Content

Taher Hafiz
Edrissa Gassama
James Covello
Gary Wnek
Ya-Ting Liao
Abdul Kareem Melaiye

Abstract

Intumescent coatings, which swell and form a protective char when exposed to flame, are key for fire protection. This study evaluates the Heat Blocking Efficiency (HBE) of epoxy resin coatings, incorporating eco-friendly tannic acid (TA) and ammonium polyphosphate (APP), on hot-rolled carbon steel (HRCS). Using a methane torch, a 127mm HRCS plate was subjected to 130 kW/m2 heat flux. To predict heat transfer and estimate HBE, we combined experimental methods and numerical simulations involving a two-dimensional heat conduction model via finite element analysis (FEA), considering thermal insulation, heat flux boundary conditions, convection, and radiation. The results aligned closely with experimental data, confirming the coatings' efficacy in keeping steel temperature below the critical range of 550-600°C for up to 20 minutes, with the minimum temperature observed under 250°C. The coatings' HBE successfully reduced the substrate temperature by 90%, demonstrating their potential for advancing fire safety in coatings technology.

Article Details

How to Cite
Experimental and Numerical Approaches to Optimize Heat Blocking Efficiency in Intumescent Coatings. (2024). Engineering Modelling, Analysis and Simulation, 2(1). https://doi.org/10.59972/xny38fpw
Section
Articles

How to Cite

Experimental and Numerical Approaches to Optimize Heat Blocking Efficiency in Intumescent Coatings. (2024). Engineering Modelling, Analysis and Simulation, 2(1). https://doi.org/10.59972/xny38fpw

References

Sun, S.; Yu, Q.; Yu, B.; Zhou, F. "New Progress in the Application of Flame-Retardant Modified Epoxy Resins and Fire-Retardant Coatings". Coatings 2023, 13 (10), 1663.

Lucherini, A. "Fundamentals of Thin Intumescent Coatings for the Design of Fire-Safe Structures". 2020.

Zhang, J.; Huang, L.; Chen, T.; Su, G. "Simulation Based Analysis of Electrical Fire Risks Caused by Poor Electric Contact between Plug and Receptacle". Fire Saf. J. 2021, 126, 103434.

Kandola, B. K.; Horrocks, A. R. "Flame Retardant Composites, a Review: The Potential Use of Intumescents". Spec. Publ.-R. Soc. Chem. 1998, 224, 395–420.

Beh, J. H. "Development of Fire-Protective Water-Borne Intumescent Coating Incorporated with Rubberwood Ash for Steel", UTAR, 2022.

Mróz, K.; Hager, I.; Korniejenko, K. "Material Solutions for Passive Fire Protection of Buildings and Structures and Their Performances Testing". Procedia Eng. 2016, 151, 284–291.

Price, E. J.; Covello, J.; Tuchler, A.; Wnek, G. E. "Intumescent, Epoxy-Based Flame-Retardant Coatings Based on Poly (Acrylic Acid) Compositions". ACS Appl. Mater. Interfaces 2020, 12 (16), 18997–19005.

Zybina, O.; Gravit, M. "Basic Ingredients of Intumescent Compositions. In Intumescent Coatings for Fire Protection of Building Structures and Materials"; Springer, 2020; pp 1–51.

de Souza, M. M.; de Sa, S. C.; Zmozinski, A. V.; Peres, R. S.; Ferreira, C. A. "Biomass as the Carbon Source in Intumescent Coatings for Steel Protection against Fire". Ind. Eng. Chem. Res. 2016, 55 (46), 11961–11969.

Xia, Z.; Kiratitanavit, W.; Yu, S.; Kumar, J.; Mosurkal, R.; Nagarajan, R. "Fire Retardants from Renewable Resources". Adv. Green Compos. 2018, 275–320.

Wang, G.; Yang, J. "Influences of Binder on Fire Protection and Anticorrosion Properties of Intumescent Fire Resistive Coating for Steel Structure". Surf. Coat. Technol. 2010, 204 (8), 1186–1192.

Takahashi, F. "Fire Blanket and Intumescent Coating Materials for Failure Resistance". MRS Bull. 2021, 46 (5), 429–434.

Yan, Y.; Dong, S.; Jiang, H.; Hou, B.; Wang, Z.; Jin, C. "Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach". ACS Omega 2022, 7 (33), 29369–29379.

Cirpici, B. K.; Wang, Y. C.; Rogers, B. "Assessment of the Thermal Conductivity of Intumescent Coatings in Fire". Fire Saf. J. 2016, 81, 74–84.

Wladyka‐Przybylak, M.; Kozlowski, R. "The Thermal Characteristics of Different Intumescent Coatings". Fire Mater. 1999, 23 (1), 33–43.

Zeng, Y.; Weinell, C. E.; Dam-Johansen, K.; Ring, L.; Kiil, S. "Effects of Coating Ingredients on the Thermal Properties and Morphological Structures of Hydrocarbon Intumescent Coating Chars". Prog. Org. Coat. 2020, 143, 105626.

Lucherini, A.; Hidalgo, J. P.; Torero, J. L.; Maluk, C. "Influence of Heating Conditions and Initial Thickness on the Effectiveness of Thin Intumescent Coatings". Fire Saf. J. 2021, 120, 103078.

Tian, N.; Delichatsios, M. A.; Zhang, J.; Fateh, T. "A Methodology and a Simple Engineering Fire Performance Model for Intumescent Fire Retardant Coatings". Fire Saf. J. 2018, 98, 120–129.

Ridoy, A. H.; Molla, M. R.; Chakrobarty, A.; Kayes, M. I. "A Finite Element Method Investigation of Mechanical and Thermal Behavior of Composite Coatings on Steel Bar".

Wang, Z.; Jia, F.; Galea, E. R.; Ewer, J. "Computational Fluid Dynamics Simulation of a Post-Crash Aircraft Fire Test". J. Aircr. 2013, 50 (1), 164–175.

Cirpici, B. K.; Aydin, I. "Investigation of Intumescent Coating on the Fire Endurance of Concrete-Filled Steel Columns with Varied Characteristics". J. Mater. Res. Technol. 2023.

Kang, J.; Takahashi, F.; T’ien, J. S. "In Situ Thermal-Conductivity Measurements and Morphological Characterization of Intumescent Coatings for Fire Protection". J. Fire Sci. 2018, 36 (5), 419–437.

Bozzoli, F.; Mocerino, A.; Rainieri, S.; Vocale, P. "Inverse Heat Transfer Modeling Applied to the Estimation of the Apparent Thermal Conductivity of an Intumescent Fire Retardant Paint". Exp. Therm. Fluid Sci. 2018, 90, 143–152. https://doi.org/10.1016/j.expthermflusci.2017.09.006.

Han, J.; Li, G.-Q.; Wang, Y. C.; Xu, Q. "An Experimental Study to Assess the Feasibility of a Three Stage Thermal Conductivity Model for Intumescent Coatings in Large Space Fires". Fire Saf. J. 2019, 109, 102860. https://doi.org/10.1016/j.firesaf.2019.102860.

Zhang, Y.; Wang, Y. C.; Bailey, C. G.; Taylor, A. P. "Global Modelling of Fire Protection Performance of Intumescent Coating under Different Cone Calorimeter Heating Conditions". Fire Saf. J. 2012, 50, 51–62. https://doi.org/10.1016/j.firesaf.2012.02.004.

Rusthi et al. - 2017 - "Investigating the Fire Performance of LSF Wall Sys".Pdf.

Huang, H.-C.; Usmani, A. S. "Finite Element Analysis for Heat Transfer"; Springer London: London, 1994. https://doi.org/10.1007/978-1-4471-2091-9.

Çırpıcı, B. K.; Orhan, S. N.; Kotan, T. "Numerical Modelling of Heat Transfer through Protected Composite Structural Members". Chall. J. Struct. Mech. 2019, 5 (3), 96. https://doi.org/10.20528/cjsmec.2019.03.003.

Burkhart, T. A.; Andrews, D. M.; Dunning, C. E. "Finite Element Modeling Mesh Quality, Energy Balance and Validation Methods: A Review with Recommendations Associated with the Modeling of Bone Tissue". J. Biomech. 2013, 46 (9), 1477–1488.

Wen, J. X.; Kang, K.; Donchev, T.; Karwatzki, J. M. "Validation of FDS for the Prediction of Medium-Scale Pool Fires". Fire Saf. J. 2007, 42 (2), 127–138.

Borg, A.; Njå, O. "The Concept of Validation in Performance-Based Fire Safety Engineering". Saf. Sci. 2013, 52, 57–64.

Bundy, M.; Hamins, A.; Gross, J.; Grosshandler, W.; Choe, L. "Structural Fire Experimental Capabilities at the NIST National Fire Research Laboratory". Fire Technol. 2016, 52, 959–966.

Manzello, S. L.; Cleary, T.; Shields, J.; Yang, J. "Building and Fire Research Laboratory (BFRL) National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899-8662 1Official Contribution of the National Institute of Standards and Technology, Not Subject to Copyright in the United.

Tewarson, A.; Chin, W.; Shuford, R. "Materials Specifications, Standards, and Testing". Handb. Build. Mater. Fire Prot. 2004, 1.

Choe, L.; Gross, J. "Introducing a New Structural-Fire Testing Capability at NIST and Large-Scale Structural-Fire Experiments". 2017.

Cirpici, B. K.; Wang, Y. C.; Rogers, B. D.; Bourbigot, S. A "Theoretical Model for Quantifying Expansion of Intumescent Coating under Different Heating Conditions". Polym. Eng. Sci. 2016, 56 (7), 798–809. https://doi.org/10.1002/pen.24308.

Silveira, M. R. D.; Peres, R. S.; Moritz, V. F.; Ferreira, C. A. "Intumescent Coatings Based on Tannins for Fire Protection". Mater. Res. 2019, 22 (2), e20180433. https://doi.org/10.1590/1980-5373-mr-2018-0433.