Estimation of Wall Thickness in Middle Cerebral Artery Aneurysms Using Fluid-Structure Interaction Simulations

Main Article Content

Jozsef Nagy
Wolfgang Fenz
Michael Giretzlehner
Vanessa Mazanec
Zoltan Major
Andreas Gruber
Philip-Rudolf Rauch
Philip Cardiff
Matthias Gmeiner

Abstract

Patient‐specific modeling of vessel wall thickness remains a key challenge in Fluid–Structure Interaction (FSI) simulations of cerebral aneurysms. To address this gap, the authors introduce the “aneurysm‐OSI‐band” (AOB)—derived from the Oscillatory Shear Index (OSI)—as a marker of localized wall thickness. Moreover, this study provides a direct comparison of OSI calculations against intraoperative imaging, offering confirmation of the AOB approach. In addition, FSI convergence is improved with an optimized residual method.


A total of 25 Middle Cerebral Artery (MCA) aneurysms treated at a single institution between 2016 and 2020 were retrospectively analyzed. Digital subtraction angiography (DSA) data were used for FSI simulations and OSI calculation. The resulting OSI maps were systematically compared with intraoperative images, wherein thin‐ and thick‐walled regions were identified macroscopically. This correlation enabled statistical comparison and assessment of the accuracy of the AOB in localizing distinct wall‐thickness profiles.


Defining the AOB based on OSI values revealed a statistically significant distinction between thin‐ and thick‐walled aneurysm segments. Quantitative analysis demonstrated robust concordance between simulation‐derived OSI patterns and intraoperative observations, highlighting OSI value differences between thin and thick-walled areas.


The introduction of the AOB provides a method for assessing patient‐specific wall thickness and determining rupture status. These findings underscore the potential of advanced computational modeling to improve personalized aneurysm management and enhance clinical outcomes.

Article Details

How to Cite
Estimation of Wall Thickness in Middle Cerebral Artery Aneurysms Using Fluid-Structure Interaction Simulations. (2025). Engineering Modelling, Analysis and Simulation, 3(1). https://doi.org/10.59972/bkzfvrqx
Section
Articles

How to Cite

Estimation of Wall Thickness in Middle Cerebral Artery Aneurysms Using Fluid-Structure Interaction Simulations. (2025). Engineering Modelling, Analysis and Simulation, 3(1). https://doi.org/10.59972/bkzfvrqx

References

S. Dhar, M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, “Morphology parameters for aneurysm rupture risk assessment,” in Neurosurgery, 2008, vol. 63, no. 2, pp. 185–197, doi: https://doi.org/10.1227/01.NEU.0000316847.64140.81.

S. Jirjees, Z. M. Htun, I. Aldawudi, P. C. Patwal, S. Khan, “Role of morphological and hemodynamic factors in predicting intracranial aneurysm rupture: a review,” in Cureus, 2020, vol. 12, no. 7, e9178, doi: https://doi.org/10.7759/cureus.9178.

H. Meng, V. M. Tutino, J. Xiang, A. Siddiqui, “High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis,” in AJNR Am J Neuroradiol, 2014, vol. 35, no. 7, pp. 1254–1262, doi: https://doi.org/10.3174/ajnr.A3558.

A. Morita, T. Kirino, K. Hashi, N. Aoki, S. Fukuhara, N. Hashimoto, T. Nakayama, et al., “The natural course of unruptured cerebral aneurysms in a Japanese cohort,” in N Engl J Med, 2012, vol. 366, pp. 2474–2482, doi: https://doi.org/10.1056/NEJMoa1113260.

K. A. M. Hackenberg, D. Hänggi, N. Etminan, “Unruptured intracranial aneurysms,” in Stroke, 2018, vol. 49, no. 9, pp. 2268–2275, doi: https://doi.org/10.1161/STROKEAHA.118.021030.

S. Inci, A. Akbay, M. Orunoglu, “Aneurysm clip compression technique in the surgery of aneurysms with hard/calcified neck,” in World Neurosurgery, 2015, vol. 84, no. 3, pp. 688–696, doi: https://doi.org/10.1016/j.wneu.2015.04.039.

R. Rahmani, J. F. Baranoski, F. C. Albuquerque, M. T. Lawton, T. Hashimoto, “Intracranial aneurysm calcification – a narrative review,” in Exp Neurol, 2022, vol. 353, 114052, doi: https://doi.org/10.1016/j.expneurol.2022.114052.

K. Furukawa, F. Ishida, M. Tsuji, Y. Miura, T. Kishimoto, M. Shiba, et al., “Hemodynamic characteristics of hyperplastic remodeling lesions in cerebral aneurysms,” in PLoS One, 2018, vol. 13, no. 1, e0191287, doi: https://doi.org/10.1371/journal.pone.0191287.

H. Kimura, M. Taniguchi, K. Hayashi, Y. Fujimoto, Y. Fujita, T. Sasayama, et al., “Clear detection of thin-walled regions in unruptured cerebral aneurysms by using computational fluid dynamics,” in World Neurosurgery, 2019, vol. 121, pp. e287–e295, doi: https://doi.org/10.1016/j.wneu.2018.09.098.

Y. Chen, B. Lin, J. Zhou, L. Chen, Y. Yang, B. Zhao, “Morphological predictors of middle cerebral artery bifurcation aneurysm rupture,” in Clin Neurol Neurosurg, 2020, vol. 192, p. 105708, doi: https://doi.org/10.1016/j.clineuro.2020.105708.

A. S. F. S. Ashkezari, F. J. Detmer, F. Mut, B. J. Chung, A. K. Yu, C. J. Stapleton, et al., “Bleb in intracranial aneurysms: prevalence and general characteristics,” in J Neurointerv Surg, 2021, vol. 13, no. 3, pp. 226–230, doi: https://doi.org/10.1136/neurintsurg-2020-016274.

J. R. Cebral, F. Detmer, B. J. Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, et al., “Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall,” in AJNR Am J Neuroradiol, 2019, vol. 40, no. 3, pp. 510–516, doi: https://doi.org/10.3174/ajnr.A5970.

P. Jiang, Q. Liu, J. Wu, X. Chen, M. Li, Z. Li, et al., “Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall,” in J Clin Neurosci, 2019, vol. 67, pp. 185–190, doi: https://doi.org/10.1016/j.jocn.2019.06.024.

L. M. Kadasi, W. C. Dent, A. M. Malek, “Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms,” in J Neurosurg, 2013, vol. 119, no. 1, pp. 172–179, doi: https://doi.org/10.3171/2013.2.JNS12968.

T. Suzuki, C. J. Stapleton, M. J. Koch, K. Tanaka, S. Fujimura, T. Suzuki, et al., “Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms,” in J Neurosurg, 2019, vol. 132, no. 4, pp. 1116–1122, doi: https://doi.org/10.3171/2018.12.JNS182897.

S. Omodaka, S. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, et al., “Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis,” in Cerebrovasc Dis, 2012, vol. 34, pp. 121–129, doi: https://doi.org/10.1159/000339678.

K. Fukazawa, F. Ishida, Y. Umeda, Y. Miura, S. Shimosaka, S. Matsushima, et al., “Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points,” in World Neurosurg, 2015, vol. 83, pp. 80–86, doi: https://doi.org/10.1016/j.wneu.2013.02.012.

S. Sugiyama, K. Niizuma, T. Nakayama, H. Shimizu, H. Endo, T. Inoue, et al., “Relative residence time prolongation in intracranial aneurysms: a possible association with atherosclerosis,” in Neurosurgery, 2013, vol. 73, pp. 767–776, doi: https://doi.org/10.1227/NEU.0000000000000096.

S. S. Sugiyama, H. Endo, K. Niizuma, T. Endo, K. Funamoto, M. Ohta, et al., “Computational hemodynamic analysis for the diagnosis of atherosclerotic changes in intracranial aneurysms: a proof-of-concept study using 3 cases harboring atherosclerotic and nonatherosclerotic aneurysms simultaneously,” in Comput Math Methods Med, 2016, 2016, 2386031, doi: https://doi.org/10.1007/s00234-021-02803-x.

S. Talari, Y. Kato, H. Shang, Y. Yamada, K. Yamashiro, D. Suyama, et al., “Comparison of computational fluid dynamics findings with intraoperative microscopy findings in unruptured intracranial aneurysms: an initial analysis,” in Asian J Neurosurg. 2016 Oct-Dec;11(4):356-360. doi: https://doi.org/10.4103/1793-5482.180962.

C. K. Cho, J. H. Choi, J. H. Oh, Y. B. Kim, “Prediction of thin-walled areas of unruptured cerebral aneurysms through comparison of normalized hemodynamic parameters and intraoperative images,” in Biomed Res Int, 2018, Art. no. 3047181, doi: https://doi.org/10.1155/2018/3047181.

S. S. Veeturi, T. R. Patel, A. A. Baig, A. Chien, A. Monteiro, M. Waqas, et al., “Hemodynamic analysis shows high wall shear stress is associated with intraoperatively observed thin wall regions of intracranial aneurysms,” in J Cardiovasc Dev Dis, 2022, vol. 9, no. 12, Art. no. 424, doi: https://doi.org/10.3390/jcdd9120424.

P. Jiang, Q. Liu, J. Wu, X. Chen, M. Li, Z. Li, et al., “Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall,” in J Clin Neurosci, 2019, vol. 67, pp. 185–190, doi: https://doi.org/10.1016/j.jocn.2019.06.024.

P. Jiang, Q. Liu, J. Wu, X. Chen, M. Li, F. Yang, et al., “Hemodynamic findings associated with intraoperative appearances of intracranial aneurysms,” in Neurosurg Rev, 2020, vol. 43, no. 1, pp. 203–209, doi: https://doi.org/10.1007/s10143-018-1027-0.

C. K. Cho, H. Yang, J. J. Kim, J. H. Oh, Y. B. Kim, “Prediction of rupture risk in cerebral aneurysms by comparing clinical cases with fluid-structure interaction analyses,” in Sci Rep, 2020, vol. 10, Art. no. 18237, doi: https://doi.org/10.1038/s41598-020-75362-5.

H. Yang, C. K. Cho, J. J. Kim, J. H. Kim, Y. B. Kim, J. H. Oh, “Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model,” in J Neurointerv Surg, 2023, vol. 15, no. 2, pp. 200–204, doi: https://doi.org/10.1136/neurintsurg-2021-018551.

J. R. Cebral, F. Detmer, B. J. Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, et al., “Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall,” in AJNR Am J Neuroradiol, 2019, vol. 40, no. 3, pp. 510–516, doi: https://doi.org/10.3174/ajnr.A5970.

L. M. Kadasi, W. C. Dent, A. M. Malek, “Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions,” in J Neurointerv Surg, 2013, vol. 5, no. 3, pp. 201–206, doi: https://doi.org/10.1136/neurintsurg-2012-010285.

L. M. Kadasi, W. C. Dent, A. M. Malek, “Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms: clinical article,” in J Neurosurg, 2013, vol. 119, no. 1, pp. 172–179, doi: https://doi.org/10.3171/2013.2.JNS12968.

J. M. Acosta, A. F. Cayron, N. Dupuy, G. Pelli, B. Foglia, J. Haemmerli, et al., “Effect of aneurysm and patient characteristics on intracranial aneurysm wall thickness,” in Front Cardiovasc Med, 2021, vol. 8, Art. no. 775307, doi: https://doi.org/10.3389/fcvm.2021.775307.

H. G. Weller, G. Tabor, H. Jasak, C. Fureby, “A tensorial approach to computational continuum mechanics using object-oriented techniques,” in Comput Phys, 1998, vol. 12, no. 6, pp. 620–631, doi: https://doi.org/10.1063/1.168744.

P. Cardiff, A. Karač, P. De Jaeger, H. Jasak, J. Nagy, A. Ivanković, Ž. Tuković, “An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations,” arXiv, 2018, arXiv:1808.10736v2. Available: https://arxiv.org/abs/1808.10736.

J. Nagy, W. Fenz, V. M. Miron, S. Thumfart, J. Maier, Z. Major, et al., “Fluid-structure interaction simulations of the initiation process of cerebral aneurysms,” in Brain Sci, 2024, vol. 14, p. 977, doi: https://doi.org/10.3390/brainsci14100977.

J. Nagy, J. Maier, V. Miron, W. Fenz, Z. Major, et al., “Methods, validation, and clinical implementation of a simulation method for cerebral aneurysms,” in JBEB, 2023, vol. 10, pp. 10–19, doi: https://doi.org/10.11159/jbeb.2023.003.

J. Nagy, W. Fenz, S. Thumfart, J. Maier, Z. Major, H. Stefanits, et al., “Fluid structure interaction analysis for rupture risk assessment in patients with middle cerebral artery aneurysms,” in Sci Rep, 2025, Jan 14, vol. 15, no. 1, p. 1965, doi: https://doi.org/10.1038/s41598-024-85066-9.

F. Lorenzetti, S. Suominen, E. Tukianen, “Evaluation of blood flow in free microvascular flaps,” in J Reconstr Microsurg Open, 2001, vol. 17, no. 3, pp. 163–167, doi: https://doi.org/10.1055/s-2001-14347.

P. Blanco, L. Müller, J. D. Spence, “Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease,” in Stroke Vasc Neurol, 2017, vol. 2, no. 3, pp. 108–117, doi: https://doi.org/10.1136/svn-2017-000087.

B. K. Toth, “The mechanical interaction between the red blood cells and the blood vessels,” Ph.D. dissertation, University of Budapest, 2012.

C. Reeps, M. Gee, A. Maier, M. Gurdan, H. H. Eckstein, W. Wall, “The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm,” in J Vasc Surg, 2010, vol. 51, pp. 679–688, doi: https://doi.org/10.1016/j.jvs.2009.10.048.

P. Jiang, Q. Liu, J. Wu, X. Chen, M. Li, Z. Li, et al., “A novel scoring system for rupture risk stratification of intracranial aneurysms: a hemodynamic and morphological study,” in Front Neurosci, 2018, vol. 12, p. 596, doi: https://doi.org/10.3389/fnins.2018.00596.

F. J. Detmer, B. J. Chung, F. Mut, M. Slawski, F. Hamzei-Sichani, C. Putman, et al., “Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics,” in Int J CARS, 2018, vol. 13, pp. 1767–1779, doi: https://doi.org/10.1007/s11548-018-1837-0.

F. J. Detmer, B. J. Chung, F. Mut, M. Slawski, F. Hamzei-Sichani, C. Putman, et al., “Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms,” in Acta Neurochir, 2018, vol. 160, pp. 1643–1652, doi: https://doi.org/10.1007/s00701-018-3595-8.

J. Fan, Y. Wang, J. Liu, L. Jing, C. Wang, C. Li, et al., “Morphological-hemodynamic characteristics of intracranial bifurcation mirror aneurysms,” in World Neurosurg, 2015, vol. 84, no. 1, pp. 114–120, doi: https://doi.org/10.1016/j.wneu.2015.02.038.

H. Meng, V. M. Tutino, J. Xiang, A. Siddiqui, “High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis,” in AJNR Am J Neuroradiol, 2014, vol. 35, no. 7, pp. 1254–1262, doi: https://doi.org/10.3174/ajnr.A3558.

Y. Karnam, F. Mut, A. K. Yu, B. Cheng, S. Hanjani, F. T. Charbel, et al., “Distribution of rupture sites and blebs on intracranial aneurysm walls suggests distinct rupture patterns in ACom and MCA aneurysms,” in Int J Numer Method Biomed Eng, 2024, vol. 40, no. 8, p. e3837, doi: https://doi.org/10.1002/cnm.3837.