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Abstract 

There is a high demand for nonlinear structural dynamics in implicit Finite Element Analysis (FEA). 
Although such methods are available, there are several obstacles to use them daily. One is their 
extreme and unpredictable computation time, which makes it often impossible to get results in time. 
Another point is the restriction of the methods to the time domain, which is often in contrary to the usual 
design rules based on frequency domain results. The Harmonic Balance Method (HBM) is a solution 
for an important sub-class of analysis cases, which resolves the two mentioned obstacles. As a starting 
point, we define HBM as a frequency response analysis with local nonlinearities. This allows to solve 
contact problems or mounting problems with nonlinear force-deflection curves. The primary results of 
HBM are in frequency domain. For all calculated frequencies, a solution in time domain is also available 
for a periodic response. A simplified radiator is used as industrial example. To prove the validity of HBM, 
a comparison with a linear frequency response analysis is performed, which shows same results. Then, 
rubber bushes and contact are added to the model as nonlinearities. Key results of stress and fatigue 
are presented, and the computation times are analysed to demonstrate the feasibility of the HBM 
implementation for applications in research and industry. All simulations are performed with the FEA 
software PERMAS, which contains the HBM among many other analysis methods in structural 
dynamics. 
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1 Introduction 
The theoretical basis of the HBM ([1]-[6])is an extension of the linear formulation as for a frequency 
response analysis by a nonlinear term: 

Mü + Cu̇ + Ku + fnl(u̇, u) = fext(t) (1) 
with time-periodic excitation 

fext(t) = fext(t + T), T = 
2π

ω
 . (2) 

Typically, a truncated Fourier series is used for the excitation 

𝑓𝑒𝑥𝑡(𝑡) ≈ 𝑓0 + ∑(𝑓𝑐
𝑘 𝑐𝑜𝑠 𝑘 𝜔𝑡 + 𝑓𝑠

𝑘 𝑠𝑖𝑛 𝑘 𝜔𝑡)

𝑟

𝑘=1

 (3) 

and for the displacement result: 
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𝑢(𝑡) ≈ 𝑢0 + ∑(𝑢𝑐
𝑘 𝑐𝑜𝑠 𝑘 𝜔𝑡 + 𝑢𝑠

𝑘 𝑠𝑖𝑛 𝑘 𝜔𝑡)

𝑟

𝑘=1

 (4) 

 
In FEA, the nonlinear term in (1) is modelled by nonlinear elements like nonlinear spring elements for 
the stiffness, where the force-deflection relationship is nonlinear. Where necessary, the damping can 
be modelled by nonlinear damping elements as well. 

2 Example Model 
The following example of a simple radiator in Figure 1 is used to demonstrate the use of the HBM. The 
dynamic loading is a sine function using the self-weight in Z direction. The model has about 400k nodes 
and 750k solid elements. In order to compare results for the same node, a reference node has been 
selected as depicted in Figure 2. The mounting of the radiator has two components for each of the four 
pins. One component is a rubber mount, and the other component is the contact between the pin and 
the rubber. A first analysis will show the effect of the rubber, and a second analysis will show the results 
of both rubber and contact. The shape of the rubber mounts and the position of the rubber mounts is 
shown in Figure 3 and Figure 4. Due to a different shape in XY plane compared to XZ and YZ plane, 
we have different force-deflection characteristics of the rubber mount in XY plane (see  Figure 4) 
compared to Z direction (see Figure 5). The characteristics were found by a nonlinear analysis using a 
reduced polynomial strain energy potential for the rubber. Of course, test results of the force-deflection 
characteristics could also be used. Then, a fitting is used to find nonlinear polynomials for the force 
deflection curves. These polynomials are used to define the behaviour of nonlinear spring elements. 

  
Figure 1. Example of a radiator.  

  
Figure 2. The node 328265 is used as reference node to compare the results at the right upper 

mounting pin of the radiator. 



M. Klein et al. / Engineering Modelling, Analysis and Simulation Vol. 2, Issue 1 (2025) 

 

3/11 
 

  
Figure 3. The rubber mounts have a circular shape in XY plain and are like a plate in Z direction. The 
rubber mounts are applied at the upper left (UL), upper right (UR), lower left (LL), and lower right (LR) 

pin of the radiator. 

  
Figure 4. The calculated rubber mount force-deflection [N – mm] curve in XY plane with the fitted 

polynomial of 5th order. 

  
Figure 5. The calculated rubber mount force-deflection [N – mm] curve in Z direction with the fitted 

polynomial of 5th order. 
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3 First Analysis: Rubber Mounts Only 
Our first study will be made with the rubber mounts only neglecting the effect of contact between pin 
and rubber mount. Figure 6 shows the modeling of one spring-damper system, which represents a 
rubber mount. This system has to be duplicated for all directions at all four pins. The two end-nodes of 
the spring-damper system have the same position in space. One is connected to a center node of the 
pin, while the other is fixed. 
The force-deflection curves of the nonlinear spring are taken from Figure 4 and Figure 5 respectively. 
Such spring-damper systems must be created for all directions at all four mounting pins. While the 
springs behave nonlinearly, we decided to use a linear function for all dampers to make it easier for the 
reader to understand the results.  

  
Figure 6. The modeling of a rubber mount by a spring-damper system.. 

3.1 The Linear Solution 
If one uses the HBM with linear springs, we expect that the result is identical to the result of a frequency 
response analysis (in the following denoted as FRF). To this end, we do not use the nonlinear functions 
of Figure 4 and Figure 5, but only the linear part of the polynomials as depicted in the same figures. 
The damping is linear with a coefficient of 0.02 [-]. Figure 7 shows the comparison of HBM and FRF, 
which allows the conclusion that both results are identical as expected. 

  
Figure 7. For the reference node 328265, the FRF and HBM displacement results [mm] are shown 

simultaneously for DOF U and W. The mentioned frequencies [Hz] f1, f2, and f4 are the 
eigenfrequencies in Z and X direction as well as rotation around the Y axis. 

3.2 The Nonlinear Solution 
Using the nonlinear functions from Figure 4 and Figure 5 the result is shown in Figure 8 with damping 
coefficient 0.02. Very typical for nonlinear solutions in frequency domain, one can see multiple solutions 
for the same frequency. A comparison of linear and nonlinear solution is shown in Figure 9, where the 
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nonlinear solution shows lower peak frequency and higher amplitude. Multiple solutions for one 
frequency could indicate instabilities. Technical products should avoid instabilities and therefore also 
multiple solutions. This can be achieved by increasing the damping of the rubber mount. Of course, the 
used rubber material should be able to provide this higher damping. By increasing the damping 
coefficient from 0.02 to 0.08, all multiple solutions can be avoided. 
Figure 10 shows the comparison of the response curves for both damping coefficients. The response 
with higher damping coefficient does not show any multiple solutions at same frequency anymore. 
 

  
Figure 8. For the reference node 328265, nonlinear HBM displacement results [mm] are shown 

simultaneously for DOF U and W. 

  
Figure 9. For the reference node 328265, linear and nonlinear HBM displacement results [mm] are 

shown simultaneously for DOF U and W with same damping coefficient 0.02 [-]. 

  
Figure 10. For the reference node 328265, nonlinear HBM displacement results [mm] for damping 

coefficients 0.02 and 0.08 [-] are shown simultaneously for DOF U and W.  
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4 Second Analysis: Rubber Mounts with Contact 
Our second study will be made with the rubber mounts and contact between pin and rubber mount for 
each direction. Figure 11 shows the modelling with the rubber mount as in Figure 6 and another 
nonlinear spring for contact. In addition, a nonlinear spring is added to model the contact. This system 
has to be duplicated for all directions at all four pins. The three nodes of the spring-damper system and 
the contact have the same position in space. The node connected to the pin is connected to a center 
node of the pin, the node between rubber mount and contact is free in one direction, and the end-node 
of the rubber mount is fixed as in Figure 6. 
We expect that the mounting of the radiator is made without any initial gap, so the radiator is not loose 
but properly fixed in the rubber mounts. Then, all initial gap widths are set to zero. This implies that 
relative motions between pins and rubber mounts are (almost) not possible. Hence, any frictional 
damping will not take place. So, additional damping has to come from the rubber mounts only. Figure 
12 shows the characteristic of the contact, where the function indicates a linear behaviour in case of a 
closed contact and no contact force in case of an open contact. 
Figure 13 shows the nonlinear response curve when taking contacts into account and with a damping 
coefficient of 0.08. There are again multiple solutions at some frequencies. 

  
Figure 11. The modeling of a rubber mount by a spring-damper system. 

  
Figure 12. The nonlinear function to model the contact is characterized by a linear behavior in case of 

a closed contact and no contact force [N] in case on of an open contact. 
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Figure 13. For the reference node 328265, nonlinear HBM displacement results [mm] with rubber 

mount and contact are shown simultaneously for DOF U and W. 
In order to avoid multiple solutions at any frequency the damping coefficient of the rubber mounts has 
to be increased from 0.08 to 0.2. This is still in the range of possible rubber damping values (≤ 0.3). By 
increasing the damping coefficient from 0.08 to 0.2, all multiple solutions can be avoided. Figure 14 
shows the comparison of the response curves for both damping coefficients. The response with higher 
damping coefficient does not show any multiple solutions at same frequency anymore. 

  
Figure 14. For the reference node 328265, nonlinear HBM displacement results [mm] for damping 

coefficients 0.08 and 0.2 [-] are shown simultaneously for DOF U and W.  
In addition, Figure 15 shows the comparison of the response curves with and without contact, where 
the damping coefficient is 0.2 for both curves. The main resonance peak is now at 31.3 Hz with contact 
and at 47.2 Hz without contact. The maximum amplitude is 8 mm with contact and 2 mm without contact. 
If the mounting cannot avoid contact, the contact case is more critical. 

  
Figure 15. For the reference node 328265, nonlinear HBM displacement results [mm] for damping 

coefficient 0.2 [-] are shown simultaneously for DOF U and W with and without contact. 
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5 Transformation to Time Domain 
After solving with HBM, we have a solution in frequency domain. Using all calculated harmonics, a 
transformation to time domain is available. To this end, a frequency out of the HBM analysis is selected 
together with a timestep and a number of loops. 
Taking the frequency of the highest resonance peak at 31.3 Hz (see Figure 15) and using 100 loops, 
the timestep is 

∆=
1

100 ∙ 31.3
= 0.0003195 𝑠  

With these numbers, one gets two sine wave periods at 31.3 Hz with 200 timesteps. Now, we can check 
the spring element forces for rubber and contact. 
Figure 16 shows the rubber displacement and forces during the vertical motion of the radiator. The 
effect of contact is clearly visible. If upper contact is closed, the lower contact is open, and vice versa. 

  
Figure 16. During the vertical vibration of the radiator, the contact at the upper pin is closed while the 

contact at the lower pin is open and vice versa. 
Figure 17 shows the contact displacement [mm] and forces during the vertical motion of the radiator. 
The input of the contact is freely vibrating, the output shows the typical contact behaviour. 

  
Figure 17. During the vertical vibration of the radiator, the contact input is freely vibrating while the 
output of the contact cuts any penetration. This behavior is alternating at the upper and lower pin. 

6 Fatigue Damage in Frequency Domain 
After transformation to time-domain we perform a fatigue damage analysis for a subset of frequencies 
from 29.9 Hz to 34.9 Hz. Outside this frequency range, the fatigue damage is very close to zero. Then, 
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a fatigue damage is calculated for these frequencies with a timestep of 1/(100 ∙ 𝑓) and 200 timesteps. 
Figure 18 shows the SN-curve of the tank material and the fatigue damage distribution over the used 
frequencies (here with the displacement response at node 357683). Maximum damage and 
displacement are at 31.36 Hz, 8.1 mm displacement, 1.37E-04 damage. This corresponds to a lifetime 
of 465 s (2/(dmg*f)) at this frequency. 
In addition, Figure 19 shows the upper part of the right tank with the calculated fatigue damage and the 
highest damage at 31.36 Hz. 

  
Figure 18.a. SN curve of the tank material, b. the damage [-] is shown over the frequency (in blue) 

[Hz] and the displacement response (in red) [mm].  

  
Figure 19. Maximum damage 1.37E-04 at node 357683 for frequency 31.36 Hz. 

The remaining point is now to check the maximum damage value by a time-history analysis using the 
same model with its nonlinear rubber mounts and contacts. A modal time-history analysis with the 
excitation function at 31.36 Hz is made, because a direct time history delivers the same results but is 
significantly more computationally intensive. We need the steady-state results avoiding any non-
periodic response. Therefore, we take 20000 timesteps and derive the fatigue damage for the last 200 
timesteps as for the HBM. Figure 20 shows the time history. Figure 21 shows the fatigue damage in the 
right upper tank. The difference between HBM and TH (Time-History) result is 

((𝑇𝐻 − 𝐻𝐵𝑀))/𝑇𝐻 = ((0.00013795 − 0.00013714))/0.00013795 = 0.00587 < 0.6% . 
The damage is the same for HBM and time-history analysis, but runtime is much different. The elapsed 
run time on 28 cores is 1.5 hours for the time-history analysis compared to about 3 minutes with HBM 
for the same frequency. 

a. b. 
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Figure 20. Modal time-history analysis with fatigue damage calculation for the last 200 timesteps (red 

box). 

  
Figure 21. Maximum damage 1.38E-04 from a modal time history analysis at node 357683 for 

frequency 31.36 Hz. 

7 Conclusions 
HBM is used to solve nonlinear dynamic problems in frequency domain. Nonlinearities used for the 
mounting of a radiator-like structure are rubber mounts and contacts at the 4 fixation pins. The force-
deflection curve of rubber is made by a separate model but could also come from a test result. 
HBM results show multiple solutions for same frequency, which was cured by sufficient damping 
provided by the rubber mounts in order to avoid instabilities. 
HBM results are transformed to time domain and followed by a fatigue analysis providing fatigue 
damage in frequency domain. For the frequency with the highest fatigue damage, a modal time-history 
analysis has been made giving the same fatigue damage. 
HBM, time-history and fatigue analysis are all integrated in PERMAS, which allows one single job for 
all three analyses (with a run time of about 3 minutes per frequency). 
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