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Abstract 

Damping entails significant effects in transient analyses, and neglecting it to obtain a conservative 
solution in numerical analyses might return no meaningful results. For steel structures, dimensionless 
damping coefficients around 1% of the critical damping are widely accepted. However, for structures 
consisting of several materials, damping coefficients may be higher; estimating their values reliably is 
important. This paper studies the case of damping estimates for steel trays supporting cable bundles. 
Free vibration signals were experimentally acquired using a steel beam with and without attached 
cables, by employing a smartphone app set to record acceleration data. The logarithmic decrements 
calculated from the signals resulted in different dimensionless damping coefficients for correspondingly 
different numbers of cables attached to the beam; five configurations were tested, up to twenty cables 
on the beam. The resulting damping coefficients showed an increase from 0.7% (without cables and 
consistent with the usual 1% value) to 3% (with twenty cables). These results were applied to a Finite 
Element (FE) model of a ladder-type cable tray, subjected to a shock pulse as excitation. Thus, the 
transient response was investigated for different cases from nearly zero damping up to a 3% level. With 
negligible damping, the analysis did not converge; instead, with the damping coefficients resulting from 
the experiment, realistic numerical results were found. It is therefore shown that valuable information 
could be obtained through a simple experimental setup. Multi-material structures can be easily tested, 
in order to obtain results that can constitute better input for transient FE analyses. 
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1 Introduction 
Cable trays are structural elements that play an essential role in large facilities and ships, as their 
electrical grids inevitably need cables to be conveyed across different and distant spaces to serve the 
multiple nodes composing the grids. Seismic loading represents the most significant type of excitation 
that threatens cable trays’ integrity [1]; correspondingly, the continuation of operations via the supported 
electrical cables is also put at risk. Reliable modelling of the dynamic properties of cable trays is 
therefore important to correctly design them and ensure compliance with the safety requirements that 
are needed. Generally, the term “cable tray” refers to the assembly including the cable structure where 
the cable lay and the supporting components that interface the tray to the surrounding structure. The 
supporting components can be of various types, and studies have been carried out to investigate their 
dynamic behaviour, with a particular focus on their damping properties [2], [3], [4]. Besides, 
experimental studies were conducted to evaluate cable trays’ strength and failure patterns [5], [6]; shock 
tables were employed to test the cable trays. Most of the available literature on the topic of cable tray 
dynamic response is related to earthquake excitation, thus for civil and industrial building applications. 
Naval vessels and marine structures are instead exposed to underwater explosions, collisions, and 
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phenomena causing high acceleration pulses. Although seismic excitation patterns may be analogous, 
little focus is dedicated to ship and offshore structures’ applications; indeed, the design of cable tray 
systems for marine applications differs from the cable tray design for buildings, as the space constraints, 
safety requirements, and functionality challenges are different [7]. This entails separate considerations 
for the trays’ supports damping characterization and simulation choices. 
A widely accepted idea is that damping has a beneficial effect on the outcome of transient analyses. 
This implies that ignoring damping must give conservative results. However, it is also possible that the 
transient analysis, after the initial load, does not deliver the expected free vibration motion. Therefore, 
in those cases, some damping must be considered in order to correctly simulate the energy dissipation 
occurring inside the model. 
This may result in a stable analysis, but the question remains whether the applied damping coefficient 
is realistic or not. For steel structures, a dimensionless damping of 1% of the critical damping is usually 
deemed appropriate. In the study by Hirose et al. [2], the value 0.5% was used instead. However, in 
the case when a combination of several materials is in place, a realistic value for damping is not readily 
available, and damping coefficients can be established through experimental data. 
As a case study for the present paper, a metallic cable tray subjected to a shock load is considered. An 
arbitrary low value for damping was initially applied to a FE model of the cable tray; the corresponding 
transient analysis failed after the shock load has vanished. No stable free vibration resulted from the 
simulation, and at a certain load step the analysis did not converge. With 1% of the critical damping the 
analysis showed realistic results, but for this model 1% is questionable. The steel structure is merely a 
container for cables with a metallic core and composite insulation, and the expected damping 
coefficients for cables, in particular a pack of cables that contribute to the system’s physical properties, 
must be higher. In fact, a cable tray with bundles of cables fastened to it can be considered as a 
composite-material structure. 
With a simple setup, consisting of general available equipment, free vibration of a steel beam was 
registered, and the decrease of the motion amplitude led to obtain the logarithmic decrement followed 
by the dimensionless damping coefficient. In addition, an increasing number of cables was attached to 
the steel beam, thereby entailing a decreasing natural frequency and an increasing damping coefficient. 
These damping coefficients were applied in the FE transient analyses, and the results showed a 
damped response as expected. It must be noted that the experiments are not a realistic representation 
of the cable tray subjected to a shock load. However, the focus should be on the effect of a cable pack 
combined with metallic structures concerning damping, in order to obtain more realistic damping 
coefficients than the accepted value for steel structures. 
A description of the cable tray model is given in Section 2. Basic theory on damping can be found in 
Section 3. Section 4 presents the layout of the free vibration experiment and an overview of the 
dimensionless damping coefficients following from an increasing number of cables attached to the 
beam. Application of these damping coefficients to the FE analysis can be found in Section 5, followed 
by the conclusions. 

2 FE model of the cable tray 
The cable tray case study considered in this paper is based on a commercially available model, namely 
a VC-60 (Niedax) [8]. The FE model that simulates this cable tray is presented in Figure 1. 
The FE software tool ANSYS has been used to develop the analysis. Reference is made to the element 
library and the command reference [9]. The cable tray is modelled with BEAM188 elements. These 
elements with 2 nodes are applied with the option for unrestrained warping, Poisson effect and a 
quadratic shape function over the length. The legs are modelled with a hollow rectangular cross section 
and an element size following from 25 elements between the rungs. The rungs are modelled with a 
channel cross section and 20 elements over the rung length. The cable mass is distributed over the 
rungs by using MASS21 elements. With 20 beam elements over a rung each rung carries 19 mass 
elements. Cable tray supports are modelled by COMBIN14 elements. These 2-node elements contain 
a damper and a spring. The damper has a damping coefficient defining viscous damping, i.e., damping 
is proportional to the velocity. The width of the cable tray is 0.20 m, with a distance between the rungs 
of 0.25 m. The cable tray is supported at 8 locations with a distance in longitudinal direction of 1.20 m. 
The total length of the model amounts to 4 times the support distance, thus giving 4.80 m overall.  
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This results in a mass of 13.63 kg. The cable mass is given by 50 kg/m resulting in 240 kg. The total 
mass (240 + 13.63 = 253.63 kg) is distributed over 8 locations giving 31.70 kg for each support point. 

 
Figure 1. Outline of the FE model of the VC-60 cable tray. 

As indicated in Figure 1 the support of the cable tray consists of spring-damper elements (COMBIN14). 
Each element carries a mass of 31.7 kg, and stiffness of the support shall result in a natural frequency 
of 50 Hz (or 𝜔𝜔𝑛𝑛 = 2𝜋𝜋 ∙ 50 = 314 rad/s). This gives: 

𝜔𝜔𝑛𝑛 = �𝑘𝑘
𝑚𝑚    →    𝑘𝑘 = 3142 ∙ 31.7 = 3.129 ∙ 106 𝑁𝑁/𝑚𝑚 (1) 

This value for the stiffness constitutes the first Real constant of the element COMBIN14. The second 
constant of the element is the damping coefficient, and for this input an arbitrary value of 1.0 N·s/m is 
applied. The material model of the cable tray is linear elastic steel with a Young’s modulus of 𝐸𝐸 = 206 ∙
109 N/m2, a Poisson ratio of 𝜈𝜈 = 0.30, and a mass density of 𝜌𝜌 = 7850 kg/m3. 
The dynamic excitation applied to the cable tray’s model consists first in a semi-sinusoidal shock pulse 
with a time span of 5 ms and an amplitude of 2000 m/s2. This magnitude (approximately 200g) is a 
typical value used in industrial and military analyses, representing an idealized shock loading. Through 
the remaining 25 ms (up to 𝑡𝑡 = 30 ms) also a semi-sinusoidal pulse is applied, with amplitude of -400 
m/s2; this excitation pattern ensures that the integral of the acceleration curve through the two semi-
sinusoidal phases is equal to zero. This therefore means that the overall velocity enforced to the system 
at the end of the shock pulse is equal to zero. Figure 2 shows the acceleration profile enforced on the 
model along the vertical direction. 
 

 
Figure 2. Time plot of the shock excitation applied along the vertical direction. 
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3 Fundamentals of damping 
The FE model shown in Figure 1 represents a system with multiple degrees of freedom, consisting of 
a mass matrix [M], a damping matrix [C] and a stiffness matrix [K]. This system is excited by a force 
vector {F}(t). With displacement vector {x} follows for the motion equation: 

[𝑀𝑀] ∙ {�̈�𝑥} + [𝐶𝐶] ∙ {�̇�𝑥} + [𝐾𝐾] ∙ {𝑥𝑥} = {𝐹𝐹}(𝑡𝑡) (2) 
Eigenvalue analysis of the homogeneous, undamped system delivers the eigenvectors, contained in 
the matrix [X]. This matrix is used for the transformation to principal coordinates {p} [10]. 

{𝑥𝑥} = [𝑋𝑋] ∙ {𝑝𝑝} (3) 
Substitution in Equation 2 and pre-multiplication with the transposed matrix [X] gives: 

[𝑋𝑋]𝑇𝑇 ∙ [𝑀𝑀] ∙ [𝑋𝑋] ∙ {�̈�𝑝} + [𝑋𝑋]𝑇𝑇 ∙ [𝐶𝐶] ∙ [𝑋𝑋] ∙ {�̇�𝑝} + [𝑋𝑋]𝑇𝑇 ∙ [𝐾𝐾] ∙ [𝑋𝑋] ∙ {𝑝𝑝} = [𝑋𝑋]𝑇𝑇 ∙ {𝐹𝐹}(𝑡𝑡) (4) 
The orthogonality of the eigenvectors with respect to mass and stiffness transforms the mass and 
stiffness matrix, [M] and [K], to diagonal matrices called principal mass matrix [Mp] and principal stiffness 
matrix [Kp].  

[𝑋𝑋]𝑇𝑇 ∙ [𝑀𝑀] ∙ [𝑋𝑋] = �𝑀𝑀𝑝𝑝� 𝑎𝑎𝑎𝑎𝑎𝑎 [𝑋𝑋]𝑇𝑇 ∙ [𝐾𝐾] ∙ [𝑋𝑋] = �𝐾𝐾𝑝𝑝� (5) 
Unfortunately, the transformation to principal coordinates will not result in a diagonal damping matrix. 
However, this problem can be solved by considering the damping matrix proportional to the mass and 
stiffness matrix. 

[𝐶𝐶] = 𝛼𝛼 ∙ [𝑀𝑀] + 𝛽𝛽 ∙ [𝐾𝐾] → [𝑋𝑋]𝑇𝑇 ∙ [𝐶𝐶] ∙ [𝑋𝑋] = 𝛼𝛼 ∙ �𝑀𝑀𝑝𝑝� + 𝛽𝛽 ∙ �𝐾𝐾𝑝𝑝� (6) 
The transformation to the principal coordinates {p} results in diagonal matrices, and this entails in 
obtaining uncoupled equations of motion. 

�𝑀𝑀𝑝𝑝� ∙ {�̈�𝑝} + 𝛼𝛼 ∙ �𝑀𝑀𝑝𝑝� ∙ {�̇�𝑝} + 𝛽𝛽 ∙ �𝐾𝐾𝑝𝑝� ∙ {�̇�𝑝} + �𝐾𝐾𝑝𝑝� ∙ {𝑝𝑝} = [𝑋𝑋]𝑇𝑇 ∙ {𝐹𝐹}(𝑡𝑡) (7) 
Damping proportional to mass means that the lower eigenmodes are damped less, and damping 
increases with the higher modes. Observing the response of steel structures on an impact load, shows 
that higher modes damp out quickly and free vibration continues in the lowest eigenmode. This indicates 
that damping is not proportional to mass (a = 0) but to stiffness (b ≠ 0). This is illustrated in Figure 1, 
where the dashpot is parallel to the spring. 
The free vibration in the lowest eigenmode with b (also called structural) damping is given by: 

𝑀𝑀𝑝𝑝1 ∙ �̈�𝑝1 + 𝛽𝛽 ∙ 𝐾𝐾𝑝𝑝1 ∙ �̇�𝑝1 + 𝐾𝐾𝑝𝑝1 ∙ 𝑝𝑝1 = 0 (8) 
Mp1 and Kp1 are the first elements in the diagonal matrices and p1 the first element in the vector with 
principal coordinates. 
The natural frequency of this (undamped) mode follows from: 

𝜔𝜔𝑛𝑛1 = �
𝐾𝐾𝑝𝑝1
𝑀𝑀𝑝𝑝1

 (9) 

The critical damping [11] of this mode is given by: 

𝐶𝐶𝑐𝑐1 = 2 ∙ �𝐾𝐾𝑝𝑝1 ∙ 𝑀𝑀𝑝𝑝1 = 2 ∙ 𝑀𝑀𝑝𝑝1 ∙ 𝜔𝜔𝑛𝑛1 (10) 
This gives a dimensionless damping coefficient: 

𝜉𝜉1 =
𝐶𝐶𝑝𝑝1

𝐶𝐶𝑐𝑐1
=

𝛽𝛽 ∙ 𝐾𝐾𝑝𝑝1

2 ∙ 𝑀𝑀𝑝𝑝1 ∙ 𝜔𝜔𝑎𝑎1
=
𝛽𝛽 ∙ 𝜔𝜔𝑎𝑎1

2
 (11) 

From Equation 11 follows for the structural damping factor: 

𝛽𝛽 =
𝜉𝜉1 ∙ 𝜔𝜔𝑛𝑛1

2  (12) 

In fact, the transformation to principal coordinates makes the matrices diagonal, and this results in a 
set of decoupled motion equations. This implies that each mode represents a single degree of freedom 
system. 
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The first analysis considers the cable tray with the cables modelled as a rigid mass, and this reduces 
the model to a single degree of freedom system with motion equation: 

𝑚𝑚 ∙ �̈�𝑥 + 𝑐𝑐 ∙ 𝑥𝑥 + 𝑘𝑘 ∙ 𝑥𝑥 = 𝑓𝑓(𝑡𝑡)̇  (13) 
The mass (m = 31.7 kg) and stiffness (k = 3.129·106 N/m) determine the critical damping, as presented 
in Equation (10), and this value follows from: 

𝑐𝑐𝑐𝑐 = 2 ∙ √𝑘𝑘 ∙ 𝑚𝑚 = 2 ∙ �3.129 ∙ 106 ∙ 31.7 = 1.992 ∙ 104 𝑁𝑁 ∙ 𝑠𝑠/𝑚𝑚 (14) 
As stated above, an arbitrary damping coefficient 𝑐𝑐 = 1.0 N∙s/m is applied, and this input gives a 
dimensionless damping coefficient (ξ): 

𝜉𝜉 =
𝑐𝑐
𝑐𝑐𝑐𝑐

=
1.0

1.992 ∙ 104 = 5.020 ∙ 10−5 (15) 

DNVGL [12] presents damping values for structures subjected to environmental loads, and in case of 
vortex shedding a suggested value is x = 0.0015. For pure steel pipes in water DNVGL presents a value 
of 0.005 and the damping coefficient increases to 0.03 to 0.04 for flexible pipes. For more information 
DNVGL refers to Blevins [13]. This book contains a table with a summary of damping tests for several 
structures. The minimum tested value in [13] is 0.0016 for steel towers. 
More data on damping are presented by Adams and Askenazi [14]. For continuous metal structures a 
damping value between 0.02 and 0.04 is given and for metal structures with joints this value increases 
between 0.03 and 0.07. 
From this overview follows clearly that the arbitrary input for the FE model in Figure 1, c = 1.0 N∙s/m, 
results in a nearly undamped system.  

4 Damping experiments 
For the present work, damping coefficients were determined by free vibration experiments of a 
cantilever beam setup. A basic wall strip for shelf brackets was used, clamped at one side to the desk 
and on the other side carrying a smartphone. This experimental setup is shown in Figure 3. The distance 
between the desk and the plate with the smartphone was about 0.60 m. 
By using a motion-recording app on the phone, the output of the acceleration sensor inside was 
registered. The smartphone app that was employed is named Physics Toolbox [16], which records 
acceleration signals with a sampling frequency of 410 Hz. The app includes the feature of writing the 
measured time series data into an Excel file, which offers the possibility to post-process the result. 

 
Figure 3. Setup of the free vibration experiment. 

Firstly, the Physics Toolbox is tested by a drop experiment. From a height of 2 m the cell phone is 
released to fall on a soft bed, and the registration of the fall is presented in Figure 4. The registration 
covering time before release and after contact is presented in Figure 4.a with a narrower time interval 
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in Figure 4.b. The vertical axis shows g-force, and up to a time t = 5.87 s the acceleration acting on the 
cell phone is 1.0 g (9.81 m/s2). At that time the phone is released, and the gravity acceleration 
decreases to zero, as expected in a free fall. 
It is emphasized that this test is intended to verify the values presented at the vertical axis of the 
registration. However, the time axis offers an estimation of the time to contact. To prevent damage to 
the phone, a soft bed is used, and this makes it difficult to mark a sharp time of contact. Furthermore, 
a free fall implies the absence of resistance but the flow of air around the falling phone will raise a force. 
Ignoring this effect and taking a free fall over 2.0 m by an acceleration of 9.81 m/s2 results in a time: 

1
2
∙ 9.81 ∙ 𝑡𝑡2 = 2.0   →    𝑡𝑡 = 0.64 𝑠𝑠  

This time interval is plotted in Figure 4.b, and the interval ends just before the acceleration peak that 
indicates the end of the motion downward. This result can be regarded as a validation of the tool, but it 
must be noted that an accurate value of the acceleration is not required for the free vibration test. This 
will be demonstrated in the following test. 

 
 (a) Overview from release to contact (b) Detail of the free-fall segment 

Figure 4. Registration of a drop test of the cell phone. 

Figure 5 shows the free vibration plot from the saved acceleration data of the configuration with no 
cables attached to the beam, as shown in Figure 3. 

 
Figure 5. Registration of the free vibration of the beam without cables attached. 

Two amplitudes (g-force) are measured: 𝐴𝐴1 = 0.8617g and 𝐴𝐴2 = 0.5956g, covering 8 complete periods. 
The logarithmic decrement is given by the ratio of the amplitudes [11]. The logarithmic decrement 
results as: 

𝛿𝛿 =
1
8 ∙ 𝑙𝑙𝑎𝑎 �

0.8617
0.5956� = 0.0462 (16) 
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As stated above, the exact value of the amplitude is of little importance since the test aims at the ratio 
of the amplitudes under consideration, irrespective of the dimensions. 
The time interval over the 8 complete periods results from the measured signals as: ∆𝑡𝑡 = 1.049 s; this 
value gives a period equal to: 

𝜏𝜏 =
1.049

8 = 0.131 𝑠𝑠  (17) 

With the dimensionless damping coefficient 𝜉𝜉 and natural frequency 𝜔𝜔𝑛𝑛, the relation between 
logarithmic decrement 𝛿𝛿 and the period 𝜏𝜏 is given by: 

𝛿𝛿 = 𝜉𝜉 ∙ 𝜔𝜔𝑛𝑛 ∙ 𝜏𝜏 (18) 
The period 𝜏𝜏 is slightly influenced by the damping according to the following equation: 

𝜏𝜏 =
2𝜋𝜋

𝜔𝜔𝑛𝑛 ∙ �1 − 𝜉𝜉2
 (19) 

However, with the actual small damping coefficients the term under the square root can be 
approximated to 1, therefore the period can be expressed by the natural period for undamped vibration: 

𝜏𝜏 ≈ 𝜏𝜏𝑛𝑛 =
2𝜋𝜋
𝜔𝜔𝑛𝑛

 (20) 

By using Equations (16) and (18), this finally leads to the value for the dimensionless damping 
coefficient: 

𝛿𝛿 = 2𝜋𝜋 ∙ 𝜉𝜉   ⟹    𝜉𝜉 =
𝛿𝛿

2𝜋𝜋 =
0.0462

2𝜋𝜋 = 0.0073 (21) 

The natural frequency follows from: 

𝜔𝜔𝑛𝑛 =
2𝜋𝜋
𝜏𝜏 =

2𝜋𝜋
0.131 = 47.9

𝑟𝑟𝑎𝑎𝑎𝑎
𝑠𝑠   𝑜𝑜𝑟𝑟 𝑓𝑓𝑛𝑛 =

1
𝜏𝜏 = 7.63 𝐻𝐻𝐻𝐻 (22) 

Figure 6 shows the situation with 20 cables attached to the beam, and the corresponding free vibration 
registration is displayed in Figure 7. 

 
Figure 6. Setup for the experiment with 20 cables attached to the beam. 

 
Figure 7. Motion signal’s registration of the free vibration of the beam with 20 cables. 
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This registration leads to a logarithmic decrement followed by the dimensionless damping coefficient. 
Namely: 

𝛿𝛿 = 1
7
∙ 𝑙𝑙𝑎𝑎 �0.9213

0.2421
� = 0.1909 𝑎𝑎𝑎𝑎𝑎𝑎  𝜉𝜉 = 𝛿𝛿

2𝜋𝜋
= 0.1909

2𝜋𝜋
= 0.030  

The damping values retrieved from the experiments with other cable packs are listed in Table 1. The 
damping coefficient 𝜉𝜉 increases from 0.007 for the case of the plain beam to 0.030 for the beam carrying 
20 cables. This means that the influence of the full cable pack entails a 4.3 factor between the damping 
coefficients of the two extreme cases. 

Table 1. Overview of the results following from the experiments. 
Number of cables 

on the beam 
Logarithmic 

decrement, δ 
Damping 

coefficient, ξ 
0 0.04617 0.007 
2 0.07110 0.011 
8 0.11738 0.019 

14 0.17087 0.027 
20 0.19092 0.030 

 
The influence of the cables on the actual entity of the composite system’s damping is clearly 
demonstrated. It is then justified to apply to the model a value of 3% of the critical damping when cable 
trays are filled with cables. 

5 Application of damping in the transient analysis 
When using the damping ratio as per Equation 16, the dynamic simulation of the system under the 
shock excitation (Figure 2) produces unrealistic outcomes due to bad convergence of the numerical 
solver. The result is shown in Figure 8: initially, the response looks like a free vibration oscillation with 
a very slowly decreasing amplitude; beyond the duration of the shock pulse excitation (𝑡𝑡 > 30 ms), the 
response does not decay to zero, but instead it deranges to unplausible values. At 𝑡𝑡 = 81 ms, the 
simulation gets aborted due to convergence impossibility. 

 
Figure 8. Response of the FE model when applying a damping ratio of ξ = 5.02E-5. 

The values presented in Table 1 for the dimensionless damping coefficient 𝜉𝜉 produce in combination 
with Equation (11) the damping values for the spring-damper elements (COMBIN14). In addition, the 
structural damping in Equation (12) is modelled in ANSYS through the command BETAD. 
The modified input by using 𝜉𝜉 = 0.007 to 0.030 entails a stabilization of the response of the system to 
the shock pulse, thus with an actual decay of the motion amplitude after the end of the shock excitation. 
Figure 9 shows the model’s relative displacement responses (blue curve, namely the motion difference 
between two nodes positioned laying at the two different sides of the cable tray), which visibly decay to 
zero after the positive pulse of the enforced acceleration. On the top of Figure 9, the response obtained 
with 𝜉𝜉 = 0.007 is shown; this value corresponds to the scenario with no cables attached to the beam, 
according to the experimental outcome shown in Table 1. Also in this case, attenuation of the oscillating 
response can be noticed, although with a significantly lower energy dissipation due to the lower 
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damping, as expected. The numerical solver therefore demonstrated to converge when these damping 
settings are adopted. 
Besides, it can be observed that even a small contribution of damping makes the response significantly 
attenuated; more specifically, few oscillation cycles and a short time after the shock pulse are sufficient 
to make the system reach the stationary state again. 

 
Figure 9.a. Response of the cable tray’s FE model (nodes with maximum acceleration) under an 
equivalent damping ratio of ξ=0.007, and in b. for ξ=0.030 with the corresponding shock pulse 

excitation displayed. 

Figure 10 shows the deformed shape of the cable tray’s model at a time step close to 𝑡𝑡 = 3.7 ms, 
namely shortly after passing the positive pulse’s peak, which occurs at 𝑡𝑡 = 2.5 ms. The positions and 
constraints of the 8 supports determine the deformed pattern that arises during and after the excitation 
timespan. 

 
Figure 10. Deformed shape and contour plot of the FE cable tray (magnified). 

6 Conclusions 
In this paper, the problem of estimating a realistic value for the damping characteristics of cable trays 
has been considered. We used the outcomes from a simple experimental setup to evaluate the damping 
coefficient of a steel beam with diverse packs of cables attached to it. A FE model of a commercial 
cable tray was developed to simulate its transient response to shock loads; the application of the 
experimental-derived damping information made the FE analysis converge.   
It must be noted that the experiments herein presented are not intended to reproduce the actual 
behaviour of a cable tray. Instead, the experimental setup aims to highlight the effect of cables bundled 
to a steel beam on the dynamic response of the overall system. The damping coefficient for the steel 

a. b. 
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beam without cables, namely 𝜉𝜉 = 0.007, is lower than the usually accepted value for steel structures 
(1% of the critical damping). 
Further work over this study subject could be developed, given the multitude of application of cable 
trays and their structural variability. The utilization of different types of shock resilient supports can be 
studied to determine the dynamic response of the trays, also to consider correspondingly different 
damping formulations in the mathematical model. Besides, having the cable bundles fastened or not to 
a cable tray is an option that would need to be accounted for, as unfastened cable bundles contribute 
less to the inertia of the overall system; the problem would thereby transform into a multi-body 
simulation. Finally, full-scale experiments using actual cable trays should be conducted, in order to test 
different configurations under shock loads and measure the corresponding full-scale response, which 
would provide more realistic insights into the actual damping properties of cable trays. 
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