#V#V#V#V#V

AVA VAVAVAN

AVAVAVAVAY N A MS
AVAVAVA VAV F E

. . . \WAVAVAVA V
Engineering Modelling, AVAVAVAVA

Analysis & Simulation Vol. 3. Issue 1. 2026
THE NAFEMS JOURNAL -9,)

What Do Simulation Engineers Need to Know About (Model-
Based) Systems Engineering

Alexander Busch?®', Rodney L. Dreisbach®®, Frank Popielas®

2Ansys Germany GmbH (Part of Synopsys)
®PNAFEMS-INCOSE Systems Modeling and Simulation Working Group (SMSWG)
°NAFEMS Ltd.
dCapvidia

Abstract

As Simulation Engineers and Subject Matter Experts (SMEs), we often focus on solving complex
technical challenges within a specific technical or physical domain by leveraging specific simulation
approaches. However, to maximize the impact and integration of our work across all the engineering
domains that are typically engaged in a project, it is essential to understand Systems Engineering (SE)
and Model-Based Systems Engineering (MBSE) practices that are becoming increasingly more
important in performing 21st century engineering projects.

Elaborating a NAFEMS World Congress (NWC) 2025 presentation and complementing a NAFEMS
ASSESS Insights, webinar, this paper aims to minimize the gap between Simulation Engineers/SMEs
and the realm of SE/MBSE by offering insights into how SE/MBSE ideas and practices can enhance
collaboration between engineers and improve (modeling & simulation) project outcomes. It shows how
the adoption of SE and MBSE concepts and approaches can help to manage complexity, ensure
traceability, and integrate simulation models more effectively within larger system architectures and
system models. By understanding core SE and MBSE principles, workflows, and tools, Simulation
Engineers can improve communication with SE and within cross-functional teams, contribute to system-
level requirements and technical concepts, and elevate the impact and value of their work in modern
engineering projects.

Specifically, insights are provided on the following topics: SE and MBSE, key systems modeling
language concepts relevant for Simulation Engineers such as Analysis, Verification, and Trade Study,
and integration of Engineering Simulation within SE and MBSE Frameworks. Furthermore, an outlook
is provided on future trends and the evolving role of Simulation Engineers in the context of SE & MBSE.

Keywords

Systems Engineering, Model-Based Systems Engineering (MBSE), Simulation, Modeling, Analysis.

© 2025 The Authors. Published by NAFEMS Ltd.
This work is licensed under a Creative Commons Attribution- @@@
NonCommercial-NoDerivatives 4.0 International License.

Peer-review under responsibility of the NAFEMS EMAS Editorial Team.

1 Introduction to SE

1.1 Definition and importance of SE in modern engineering

Systems Engineering (SE) is an approach to understand and develop a complex System of Interest
(Sol) that is associated with the product that an organization aims to build and bring to the market.
Traditionally, most engineering disciplines, Subject Matter Experts (SMEs) and Simulation Engineers
alike, dive deep into specialized areas, whereas SE focuses on a broad perspective, not only
considering the elements of a Sol but also the interactions, emergent behaviors, and the context in

'Corresponding author.
E-mail address: alexander.busch@incose.net (Alexander Busch)
https://doi.org/10.59972/fzvc4 1wt

1/22

mailto:alexander.busch@incose.net
https://doi.org/10.59972/fzvc41wt
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

which the Sol operates. A core aspect of SE is effective communication: it facilitates clear dialogue both
between engineers of various disciplines and with external stakeholders, ensuring that everyone shares
a unified understanding of system objectives and constraints. Failure to see the “whole” may result in a
catastrophe such as the Challenger Space Shuttle disaster [1]. In this case, the technical root cause
was the lack of performance of O-rings in cold temperatures. Although the subsystem engineers raised
concerns about that topic, the critical insight gained on a subsystem level was not integrated with the
overall mission risks and environmental conditions by higher-level management; additional
management and organizational failures also contributed to the catastrophe.

SE is a transdisciplinary field of engineering that holistically focuses on the design, integration, and
management of complex systems throughout their entire lifecycles. A system, in this context, refers to
a collection of interrelated elements working together to achieve a specific overall goal. In general,
systems can range from physical infrastructures such as transportation systems, to software-intensive
and cyber-physical systems such as autonomous vehicles. Furthermore, within the context of
engineering, system elements such as subsystems, modules, assemblies, components, and even parts
are also systems unto themselves. Therefore, many of the concepts and approaches of SE are equally
helpful in the design and engineering of complex systems as well as in the design and engineering of
their constituent elements. The primary aim of SE is to ensure that all system elements function
optimally and cohesively, addressing both technical and operational needs of the Sol and its
stakeholders, respectively.

As technologies advance, the complexity of systems has increased, as well as the complexity of the
engineering world. This has resulted in the use of an ever-increasing number of methods, tools, and
data. SE provides a systematic approach to manage that complexity by playing a critical role in ensuring
that complex systems are developed efficiently, cost-effectively, and with the required level of
performance, reliability, and safety [2]. Furthermore, SE is key to ensuring that a system satisfies the
needs of its relevant stakeholders; the first and foremost being the intended users of the system.
Moreover, SE seeks to deliver a balanced solution that primarily addresses key stakeholder
requirements but also satisfies legal constraints and aligns with the business needs of the developing
organization, thereby identifying and realizing the most optimal overall solution. Without a robust SE
approach, projects can suffer from scope creep, misaligned requirements, and inefficiencies leading to
delays, budget overruns, and ultimately, project failure. Therefore, SE is indispensable in managing the
entire lifecycle of a system, from concept and design to operation and decommissioning.

The International Council on Systems Engineering (INCOSE) vision 2035 [3] provides a picture of how
215t century engineering may look like in a decade from now: heavily model-based and less document-
based product data that will be more tightly integrated across multi-technology domains, especially with
respect to Modeling & Simulation. This will require any disconnected technical domains and
communities to come together more closely, primarily to connect the data and enhance communication
between the different domains. This is the ambition and charter of the joint NAFEMS-INCOSE Systems
Modeling & Simulation Working Group (SMSWG) for the case of MBSE and System Simulation and the
ambition of this paper, which elaborates on concepts and ideas presented at the NAFEMS World
Congress (NWC) 2025 [4] and complements a webinar [5].

1.2 Key SE concepts relevant to Simulation Engineers

Stakeholder Needs and Requirements Management is one of the foundational principles of SE [6].
Stakeholders may include customers, end-users, regulatory bodies, and project teams, each with
unique expectations. Effective requirements management involves capturing, validating, and prioritizing
stakeholder needs, and ensuring they are integrated into and addressed by the system’s design.
Misunderstanding or failing to account for stakeholder needs is one of the most common causes of
project failure, so continuous engagement with stakeholders is critical throughout the lifecycle of the
system. For Simulation Engineers, this means understanding the objectives behind the system or its
elements being developed and ensuring that any simulation accurately reflects these goals and
associated specific analysis needs. In the SE world, analysis includes simulation as a specific type of
analysis. Simulation, or more precisely, Engineering Simulation - sometimes also referred to as
Computer-Aided Engineering (CAE) or Engineering Analysis - falls under the umbrella of Model-Based
Engineering (MBE) and so does Model-Based Systems Engineering (VBSE).

System Architectures and Interface Control: As exemplified by Figure 1, system architectures define

how the Sol interacts with its environment and other systems, and how its elements interact with one
another to fulfill respective objectives — both structurally and behaviorally as noted below [7].

2/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

1. Structurally as in a mechanical topological sense. That is, how elements comprising a Sol are
arranged with respect to each other, both logically and physically. The red relationships shown
in Figure 1 define the composition of the Sol, which may be interpreted as a Bill of Materials in
Mechanical Engineering. Usually, the system is not specified to its most granular element (e.g.,
a nut and screw); there is a cut-off at some level (L1, L2, Lm for some elements in Figure 1),
typically when elements are identified as make-or-buy. As for buy, both Commercial-Of-The-
Shelf (COTS) items and items to be subcontracted for further development by suppliers are
options, and the cut-off is the specification of either of the two. As for make, cut-off typically
occurs when handing over to a subject matter expert or domain-specific engineering discipline
for design and implementation.

System Context Environment ‘ ’ System of Systems | ‘ Other Systems

System of Interest LO
System Elements L1
]] L...

. Lm

Figure 1. A generic system architecture exemplifying the structural topology and interaction
across multiple levels (LO...Lm) of the system’s architectural hierarchy.

2. Behaviorally as in the description of the targeted use cases for the Sol and its operations,
intended interactions, functionalities, and processes. These items may be in the form of
sequences of events, state transitions, messages or item flows, and activities, (both on system
and system element levels, and both internally and externally) that are typically captured in
separate descriptions. Note that in addition to the specified and intended behaviors prescribed
in an architecture, there are also reactive behaviors (e.g., physical responses to external loads)
that are typically analyzed by dedicated simulations.

Therefore, managing and controlling system element interfaces (internally and externally) is a major
task in SE that is typically reflected in an architectural description by Interface Control Documents
(ICDs) as shown in Figure 1. A system architecture also identifies the allocation of system functions to
logical modules and physical elements. Such functions may be characterized by value attributes
satisfying requirements that are to be verified by simulation, two classical categories are [6]:

1. Measures of Effectiveness (MoE): Criteria assessing how well a system achieves its mission
or operational outcomes, focusing on end results, user satisfaction, and mission success from
a stakeholder's perspective (the What).

2. Measures of Performance (MOP): Criteria evaluating the technical performance and
efficiency of a system's design and implementation, focusing on internal characteristics and
processes (the How). Classical examples are weight and mass for mechanical parts, power
needs for electrified subsystems, or data objects to describe flow of information for
communication purposes.

A well-structured system architecture provides a blueprint for building, testing, and deploying a system.
Moreover, SE emphasizes managing the entire system lifecycle, from requirements gathering and use
case analyses via design and development, to deployment, operation, and eventual retirement. For
Simulation Engineers, understanding the system architecture is beneficial to ensuring that models and
simulations accurately represent the specified behavior and interactions of the system elements.

Verification and Validation (V&V) are integral aspects of SE; however, compared to the realm of
Simulation, the concept of V&V in SE is ensuring that the system meets its specified stakeholder and
technical requirements and functions [6], [8].

In SE, Verification answers the question, Did we build the system right? by confirming that the system
has been constructed according to design specifications, i.e., providing “objective evidence that a
system, system element, or artefact fulfils its specified requirements and characteristics” [8], whereas

3/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

Validation answers the question, Did we build the right system?, i.e., provides “objective evidence that
the system, when in use, fulfils its business or mission objectives and stakeholder needs and
requirements, achieving its intended use in its intended operational environment” [8]. Verification often
addresses the MoPs, whereas Validation is usually concerned with the MoEs. Verifications may be
performed by various activities, one of which is an Analysis as opposed to a real-world Test. Very often,
an Analysis is SE jargon for a simulation. In other words, Simulation Engineers provide a virtual
Verification service to SE by means of a simulation and its result. Typically, this is an informal act of
Verification used frequently and iteratively early-on in the development of a system prior to having
testable hardware available.

In contrast, in the context of Simulation, Verification answers the question Did we build the
Computational Model right?, i.e., ensures that the implementation of the model has been done correctly
by establishing “the mathematical correctness of the computational model with respect to a
mathematical model” [9], and that the numerical error (between an analytical solution and the numerical
solution) is sufficiently small. Validation answers the question Did we build the right Computational
Model? by determining “the degree to which a computational model represents the empirical data from
the perspective of the context of use” [9], i.e., quantifies the prediction capabilities of the simulation with
respect to real-world test data and quantifies the associated error [9], [10]. For Simulation Engineers,
within their very own field, V&V is crucial to ensure that the simulations accurately reflect real-world
scenarios and that the models are reliable for decision-making purposes, i.e., the models predict real-
world behavior within an acceptable error. In addition, Simulation Engineers must acknowledge the role
that simulation plays as a means of (virtual) Verification of the Sol and its elements in SE.

1.3 SE development models

SE employs various development models to guide the design, implementation, and V&V of complex
systems. Among these, the Vee Model [11], [12], [13], [14] (see Figure 2) is a widely adopted framework
due to its clear structure and logical approach to integrating design and verification activities. While it
has appeared in many versions and variants over the years, many of which have faced criticism as
being too rigid and not practical, its logical meaning still provides the best idea of SE and as such, it
remains a relevant fundamental concept in SE and many organizations.

Needs &
constraints

Requirements
Architecture
Design

Requirements
Architecture
Design

Requirements

Figure 2. Conceptual visualization of a generic Vee Model showing the logical relationships
between major SE work items.

The Vee Model is a graphical representation of key aspects of the SE process that emphasizes the
logical relationships between the system's descriptive/prescriptive development artefacts (e.g.,
Requirements, Architecture, Design) and the corresponding V&V artefacts. It is shaped like a V, with
the following key aspects (see Figure 2):

1. Definition, that is, specification and decomposition (Left Arm)

4/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

a) Needs elicitation, Concept of Operations (ConOps), Operational Concepts (OpsCons)
and Requirements Definition: At the top left, the framework requires an understanding
of the stakeholder needs and a definition of the system-level requirements that form
the foundation for subsequent system development and design. A ConOps describes
the way the organization utilizing the Sol performs business, whereas the OpsCons
details the intended operational concepts for the Sol [6], [15]. These terms are not
separated clearly from each other very often.

b) System Decomposition and Design: The system is recursively decomposed and
refined into elements (across the different architectural levels, see Figure 1) with
increasing levels of detail; each level defines requirements for the next lower level. A
typical but not standardized terminology is the distinction of subsystems, components,
and parts (not depicted).

Implementation (Bottom of the V): At the base of the V, the fundamental elements of the
system are defined and either reused, developed, or procured. This level focuses on coding,
manufacturing, or configuring individual elements.
Realization (may be done virtually), that is, Integration and V&V (Right Arm)
a) Integration and Verification recompose the base elements by recursively integrating
them into larger assemblies, components, modules, and subsystems.
b) V&V tests are performed at each level to ensure that each integration step meets its
design specifications and stakeholder needs.

c) Validation: At the top right, the system is validated against stakeholder needs,
assuring that it performs as intended in its operational environment.

Some key principles of the Vee Model are:

1.

Recursive pattern: Each system element may be considered as yet another system and thus,
the Vee Model is recursive. The example shown in Figure 2 could essentially be reduced to the
second and third level. If one were to visualize the idea perpetuated by the Vee Model for an
actual Sol, it would be comprised of many Vees that are connected vertically, horizontally, and
into the plane (and multiple other dimensions), depending on whether the visualization is to
convey the evolution of development over time, the different hierarchies of the architectural
levels, the system element design candidates, or its variants.

Traceability Across Levels: Each requirement defined on the left side corresponds to an
architectural element (on higher levels) or a design element feature (on lower levels), along
with a respective verification test or validation activity on the right side. This ensures that all
requirements are translated into system features that are traceable, verified and validated.

Decomposition and Integration Symmetry: The left arm represents a decomposition of the
system into manageable elements, whereas the right arm integrates those parts back into a
cohesive whole that is verified and validated on all levels. This symmetry ensures that the
system's overall design intent is preserved during implementation and integration for the Sol
as well as for all its elements.

The Vee Model is often misinterpreted as the development of the Sol over time [16]. Conversely, it
emphasizes the importance of alignment between development and V&V activities, providing a logical
framework rather than a process description [16]. Figure 3 shows an example of how the Vee Model
may be visualized over time as a series of Vs, each with increased information and maturity. Each
represents snapshots/baselines of the evolving design at distinct points in time (e.g., versions, releases,
project gates and milestones, etc.) underlining the increase of knowledge and available information that
is associated with increased detailing and development of the Sol elements and their overall design
maturity, as promoted by VDI 2206 [17]. Key characteristics are:

1.

Iterative Feedback Loops: Although the Vee Model appears linear, feedback loops are
essential at every level. For instance, integration tests may reveal design flaws, prompting
adjustments to lower-level elements or even system requirements. Thus, the Vee Model should
be considered as a logical state of an aspect of the system or a system element at a particular
point in time (as depicted by Figure 2) primarily during the development phase but generally
throughout the entire lifecycle of a Sol, as exemplified by Figure 3.

Early V&V of Requirements: The Vee Model shown in Figure 3 emphasizes early (and often
informal) V&V and analysis to reduce downstream risks. Misaligned or incomplete requirements
identified late in development can lead to costly redesigns, especially after requirements have

5/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

been frozen and make-or-buy decisions have been made. Note that it is relevant to first answer
Am | doing the right thing? than answer Am | doing the thing right?.

For Simulation Engineers, the Vee Model offers a clear yet simple (as presented here) framework for
aligning their work with SE: Simulation activities typically support Verification in the form of one or more
Analyses. For example, simulations may either verify a subsystem's performance against its
requirements or predict its integration challenges before physical prototypes are built.

Needs &
constraints

Needs &
constraints.

Early and informal Make—Or—Bu%/, Formal V&V by Test or
S

V&V by Simulation or Test Requiremen Simulation

Figure 3. Conceptual evolution of a system developed by means of the Vee Model (see
Figure 2) over time; the increase in size represents the increase in maturity and amount of
information. Adapted from [16].

1.4 Why analysis?

The motivation to conduct an Analysis is typically to address an issue or concern that is identified as an
associated risk. Analysis (specifically simulation) is a means to identify and understand causes and
effects and to reduce risks as early as possible. The outcomes and insights that simulations provide
are fed back into the architectural development and design of the Sol [16] leading to iterative
refinements and improvements over time, see Figure 3. When architecting and designing a system,
simulation is typically used as an early-stage means of analysis to evaluate requirements, to size the
Sol itself but also to size and budget the elements at all levels of the Sol, see Figure 1. Simulation is
also used to provide insights on conflicting requirements and/or candidate designs in the form of trade
studies. When employed early, the business impact of simulation results in reduced development costs
(e.g., by reducing costly physical prototypes), faster time-to-market (e.g., by getting answers more
swiftly), and improved quality (e.g., by gaining more in-depth insight into the design).

1.5 Benefits of SE in complex, multidisciplinary projects

Today’s systems are often composed of diverse elements that require the involvement of multiple
technical disciplines such as mechanical, electrical, software, and civil or chemical engineering in their
development. The multidisciplinary nature of these projects introduces additional significant complexity
to the already complex cyber-physical systems that the 215 century brings us. Each discipline may have
its own language, methodologies, and challenges. SE offers a framework to coordinate these diverse
disciplines, ensuring that all involved technical domains, as well as the elements of the system, work
together seamlessly. Specifically, the benefits of SE in managing complex projects include:

1. Improved Communication and Collaboration: SE fosters better communication between
engineers and SMEs from different technical domains, ensuring that everyone is working
toward the same overall objectives. This collaboration reduces the risk of misunderstandings
and misaligned goals.

2. Enhanced Risk Management: SE involves rigorous risk analysis and mitigation strategies
throughout the lifecycle of a Sol. This proactive approach helps identify potential issues early
on and allows for effective risk management, reducing the likelihood of costly failures.

6/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

3. Optimized Resource Utilization: By managing the entire lifecycle of a system and optimizing
designs from the outset, SE helps reduce resource waste, minimize redundant processes, and
improve overall efficiency, thereby saving both time and money.

4. Increased System Reliability and Quality: By focusing on the integration of subsystems and
the validation of system behavior, SE ensures higher quality outcomes and a final product that
is more reliable.

In conclusion, SE is essential for tackling the increasing complexity of modern engineering projects. For
Simulation Engineers, understanding SE principles such as stakeholder needs, system architecture,
integration, and V&V are crucial for creating models and simulations that are of appropriate fidelity in
contributing to the successful realization of complex systems. The application of SE in multidisciplinary
projects ensures that all elements work together efficiently, reduces project risks, and optimizes
performance of the final product.

2 Overview of Model-Based Systems Engineering (MBSE)

2.1 Explanation of MBSE, its principles, and how it extends traditional SE

Model-Based Systems Engineering (MBSE) is an advanced approach to SE that emphasizes the use
of formalized models typically described in a standardized modelling language (see Sections 2.2 and
3.2 for details) throughout the entire lifecycle of a system. Specific views on the model(s) are used for
visualization and communication purposes as needed to support system requirements, design,
analysis, in addition to V&V activities [6], [18], [19]. MBSE is a subset of Model-Based Engineering
(MBE) which is defined as “An approach to engineering that uses models as an integral part of the
technical baseline that includes the requirements, analysis, design, implementation, and verification of
a capability, system, and/or product throughout the acquisition life cycle.” [20]. In contrast to traditional
SE, which often relies heavily on document-based methods for requirements analysis, architectural
descriptions, and V&V, MBSE shifts the focus to creating integrated system models, conceptually
visualized in Figure 4.

These digitally-based models encapsulate descriptions of the Sol’s context, its constituent elements,
their relationships and interfaces, specifications of the intended behavior of the Sol in the form of, e.g.,
state machines, activities, event sequences, and links for all these to the overall system requirements
as well as the decomposed technical requirements on lower levels to provide a more consistent means
of understanding and managing complex systems.

While particular aspects of the integrated system model may be visualized by dedicated views (as
exemplified by the Requirements, Structure, and Behavior views in Figure 4) the principles of MBSE
revolve around using a central system model described with a formal system modeling language [21]
(the background in Figure 4) as the primary source of information that supports decision-making,
communication, and V&V across all stages of the system’s lifecycle. Although there may be more than
one system model, and certainly there are all sorts of other required engineering models, the system
model serves as a living description, continuously being updated to reflect changes in system
requirements, design, and behavior. Typically, the system model is stored in a repository (see E in
Figure 4); a database-like system supporting versioning, revisions, and configuration management.

Sometimes, the system model is referred to as the Authoritative Source of Truth (ASoT) of the project.
In an ideal world, all the other activities throughout engineering and further down the system’s lifecycle
such as manufacturing, sustainment etc., will always come back to this system model and reference it,
evolve it, or create derivatives of it.

7/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

- 5emywods]. ccoreanline. graphic/2.0" xmlns:s)

froletanel” wmi:id-"f20499f0. 5 ¥ b2 9nfc- 517831

Joni 1475857684 59424948 337 - Gec@scadbice” soul

igaaits be13-4910-akac Z
otode" sori 2 1) 72-dbe - 4cdé- 8300 - 5e5631995)

frolctane: 75281527 £104- 232565 708738}

Jons :14-" f 2100268 536¢ 43735032 Scbasasc27 3" soul
bnstrainty-"76"/>
StraintX-"-18" constrainty-"76"/>

N

Figure 4. Conceptual visualization of an MBSE model (described in a modeling language as
displayed in the background and typically stored in a repository &) with example views for

Structure, Requirements, and Behavior specified in the model.

Key principles of MBSE include:

1.

Federated Model Management: Rather than maintaining disparate documents and
spreadsheets, MBSE is based on using a single model that serves as the ASoT for all system-
related data, ensuring consistency across all the Sol developers and stakeholders. That model
may be connected to other models and databases as needed, for instance, a Requirements
Management Database.

Integrated Design and Simulation: MBSE integrates system design and simulation, enabling
engineers to model not only the system’s architecture but also to simulate its intended or
reactive behavior and interaction with other systems. While traditional SE often describes
analysis needs via a dedicated document with the Simulation Engineers reporting their results
in other documents, for modern MBSE/MBE analysis and simulation collaboration, all needs
should be specified in the system model, with the simulation tools being connected to the model
via Application Programming Interfaces (APIs) or integrated via model exchange formats. As
such, the system model may be linked with simulations and may also contain specifications
relevant for simulations.

Collaboration and Communication:. MBSE encourages collaboration between
multidisciplinary teams and organizations by using models that are easy to share, understand,
and update. The visual nature of the digital models simplifies communication among diverse
stakeholders.

Traceability and Change Management: MBSE enhances traceability of changes in a system
by linking system requirements, design, and V&V cases in the model, and into other models.
Any changes made to one aspect of the system are automatically reflected across all related
areas, improving consistency and reducing errors. Traceability of these changes is achieved
by following the relationships within the model and over its different versions, not only for the
model as such but for individual model elements. For example, to investigate the consequence

8/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

of a change in a requirement, its relationships to other model elements are traced through the
model to its verification case(s) such as tests or simulations, and vice versa.

5. Digital Thread Enablement: The Integrated Design and Simulation principle (Item 2) is a
fundamental requirement for architecting a robust Simulation Process and Data Management
(SPDM) framework that allows for full traceability of the requirements of a system via its
architectural solution elements to its verification artifacts resulting from various engineering
models and simulation data. Standards and interoperability play a central role in enabling digital
thread and digitalization processes.

By incorporating models into every phase of the system development process, and throughout the
lifecycle of a Sol, MBSE extends traditional SE by reducing ambiguity, enhancing collaboration, and
improving the overall efficiency of the system development. Traditional SE tends to be document-centric
which can result in inconsistencies and disconnects between different project phases,
miscommunications, and inefficiencies. MBSE, in contrast, allows teams to

1. agree on a consistent description of the Sol as captured in the ASoT system model,

2. visualize the system architecture (consistently described in the ASoT system model) and
especially its behavior as needed; this is exemplified by the dedicated views of Requirements,
Structure, and Behavior in Figure 4,

3. simulate potential outcomes via execution engines (by leveraging the built-in semantics of the
modeling language) and utilize specialized analyses and Engineering Simulation tools
connected to the system architecture to evaluate designs iteratively.

This is particularly crucial in the context of increasingly complex, multidisciplinary projects.

MBSE is fundamentally a comprehensive, cross-disciplined collaborative Systems Thinking modeling
approach that spans the basic requirements of the system, the elements comprising its structure and
their operational interaction that defines the overall behavior of the system.

2.2 Modeling system structure and behavior and their roles in MBSE

In MBSE, the primary focus is on the use of formalized, digital models to describe and eventually
simulate the structure and behavior of the Sol (that is, the architecture of the Sol). Integration of these
descriptions in the system model enables a more holistic view of the system, making it easier to explore
design alternatives, verify and validate system and stakeholder requirements, and ensure that the
system functions as intended when operating in different scenarios. In line with the definitions provided
in Section 1.2:

1. Structural modeling focuses on how the various elements of a Sol are organized and how
they interact with each other. It typically defines the system’s physical and functional elements,
their relationships, and the interfaces between them. Structural modeling is crucial for
understanding the system at a high level and ensuring that all parts of the Sol are appropriately
integrated. These models may represent both high-level system elements and their
decomposition and may involve the use of diagramming techniques to capture various
viewpoints such as structural, functional, and interface perspectives. For engineers used to 3D
CAD, it is essentially comparable to generating the Bill of Materials (BoM) including the
hierarchies in the form of layered assemblies but also their interface descriptions, although
typically on the top levels LO...Lm with a cut-off at some point.

2. Behavioral modeling focuses on how the system logically behaves over time, including its
dynamic interactions with its operational environment and other systems. A system's behavior
includes any event within the system that triggers or is triggered by other events, either within
the system or in its environment. In simpler terms, it is how the system changes and influences
what happens next. Reactions, responses, and actions are all examples of this behavior [22].
Behavioral models are used to simulate the system's operation, test its performance, and
identify potential failures or bottlenecks. These models might include state diagrams [23],
activity diagrams, sequence diagrams, or other representations that show how system
elements interact during different phases of operation. Behavioral modeling is integral to MBSE
because it allows teams to verify the intended system behavior and, depending on the
simulation approach being used, performance early in the design process, thereby reducing
the risk of costly redesigns during later stages of development.

Typically, the system model contains both structural and behavioral descriptions that are linked with

each other - essential in MBSE as the combinations support a comprehensive approach to system
design. For instance, allocation of functions to specific elements of the system is possible by linking

9/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

them to the behavior specifications. The ability to trace and link requirements in this manner allows for
a consistent and complete description of the Sol.

Various modeling languages and methodologies support the creation of these models. For example,
the Arcadia language and methodology [24] focus on functional analysis that allows system architects
to define and simulate complex systems from a functional perspective. OPM (Object-Process
Methodology) [25] integrates object-oriented and process-oriented approaches, thereby enabling
engineers to model both the structure and behavior of systems in a single, unified framework. Domain
specific languages exist such as the Architecture Analysis & Design Language (AADL) for modeling the
software and hardware architecture of embedded, real-time systems [26] or the Very High Speed
Integrated Circuit Program Hardware Description Language (VHDL) for modeling digital systems at
multiple levels of abstraction [27], and its extensions VHDL-AMS [28] for modeling analog and mixed-
signal systems. These languages, along with others like the very prominent and general-purpose
Systems Modeling Language (SysML), provide flexible tools for capturing the system's structure and
behavior, allowing engineers to tailor the approach based on specific project requirements.

SysML [29], [30] is a standardized modeling language specifically designed for modeling complex
systems in the context of MBSE. It provides a versatile approach to define, analyze, and communicate
various system aspects such as requirements, structure, and behavior (see Figure 4) in addition to
relationships and parametric expressions, typically supplemented with a methodology. While SysML v1
[29] offers specific diagram types for requirements (Requirement Diagrams), structure (Block Definition
and Internal Block Diagrams), and behavior (Activity, State Machine, and Sequence Diagrams), SysML
v2 [30] introduces greater modeling flexibility by moving beyond rigid diagram types toward more
customizable representations, in addition to providing a standardized API [31] that enables smoother
integration with other engineering and simulation tools and supports more robust data exchange.

The role of modeling languages such as SysML in MBSE is pivotal, as they provide a formal, consistent
way to model and represent complex systems. The ability to trace and link requirements, design
elements, and system behaviors is crucial in MBSE; the graphical nature helps engineers communicate
and analyze these connections effectively. Additionally, the flexibility of most languages allows them to
be used for a wide variety of applications, from aerospace to automotive and to healthcare.

3 SE and MBSE approaches and their relevance to simulation

The approaches used in performing SE and MBSE span a wide range of capabilities, supporting
everything from requirements management via architecture and design to system simulation and V&V
by simulation. These approaches can be categorized into several types, each with a specific relevance
to simulation work. In the following sections, tool names are provided for illustrative purposes only and
do not imply endorsement. For more details, please refer to Section 7.

3.1 Requirements Management

Requirements Management (RM, Figure 5, top-left) is used to capture and manage stakeholder and
system requirements that define the foundation for the system’s structure (design) and behavior.

RM is typically performed within a relational database environment, offering features such as version
control, traceability, and impact analysis. The role of RM in SE is to provide a consistent and properly
managed set of all relevant requirements, typically captured in a centralized or federated repository. It
provides the basis for the creation of links between requirements and corresponding system elements,
design elements, and test cases. While RM is often put under the umbrella of MBSE, some schools of
thought do not consider it to be part of MBSE because “requirements cannot be modeled.” However,
because the utilized relational databases fundamentally allow for n:n relationships (e.g., one
requirement is realized by many solution elements, or one solution element satisfies many
requirements) as well as requirements metadata, RM may be considered as an MBSE approach.
Examples are Codebeamer, DOORS, ENOVIA, Jama Connect, or Polarion. For Simulation Engineers,
RM databases are critical because they link typically textual specifications to the architecture model,
design models, and simulation models, either explicitly or implicitly. By ensuring that all requirements
are captured and properly traced throughout the system lifecycle, the RM tools facilitate simulation
activities that are directly aligned with the system’s goals. Simulation Engineers may use RM databases
to verify that the models and simulations are consistent with the requirements, improving confidence in
the system's performance and reducing the risk of errors in later stages.

10/22

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/System_architecture
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Real-time_computing

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

3.2 Architectural Modeling

Architectural Modeling (Figure 5, left) helps engineers to create comprehensive models of a Sol that
offer both high-level and detailed views of the structural and behavioral aspects of a Sol, including its
elements and their interfaces. In most cases, the term MBSE is predominantly associated with
architectural models, although it encompasses a broader range of model types. Because the
architecture models are stored in a standardized manner, they allow for clear communication between
teams and stakeholders.

System Context/SoS Simulation
* Mission Analysis f_m_u
System Simulation

i

System Simulation

%i‘\/]\:l g m o{;’l’:c a
le—s] —— | “000n0E
julia

i IcOS

i

Simulation =
workflows t

- CAE Simulation

4mp| FEA’_— CFD |BM
AML

Requirements Management

]

Architecture Modeling
o N .s;:e;‘..E $I N4 suresar

LANGUAGE . LANGUAG! ARCADIA

§55AAD|— CPM s, {"?.."é..‘.'.'é" Lz

o

EE E1 BN
2

Crs I N

SysPhS & SysPhS 2

= m
(]

= 0%
a 5
= @
[3) [¢]
(7] =
0 @
2 %)
o =
£ 2
3 o
£ 2
o0 =]
(= —_
w he)
) @
1S =3
Z g
£ =
A 5
wn -

Behavior Execution

L FEM '

FVM DEM:%e’

Figure 5. SE, MBSE and Engineering Simulation approaches and their conceptual
relationships, linkages, and interface technologies. Grey arrows illustrate native data
exchange within tools. represent programmable integrations via APIs. Red
arrows highlight transitions to higher levels of abstraction or reduced fidelity models.
Adapted from [4], [16].

Depending on tool implementation, the models may be executed (Model Behavior Execution in Figure
5, left) to investigate the intended behavior as well as integration and interaction of the system elements,
and to serve as the foundation for simulating system behavior. By modeling both the physical and
functional elements of a system, architectural modelers capture the necessary information for
behavioral modeling. As such, these tools often support the creation of detailed interface specifications
which are critical when simulating how different subsystems communicate and interact in a larger
system context. While requirements are often managed in dedicated databases, most architecture
modeling tools (and the underlying languages) also support requirements, as conceptually depicted in
Figure 4. Typically, requirements are included in the model and linked to relevant structural elements,
attributes, or behavioral model entities, ensuring traceability and integration within the system
architecture. Open-source examples for architectural modelers are Capella, Modelio, and Papyrus.
Commercial examples include Cameo Systems Modeler, Enterprise Architect, Genesys, Rhapsody,
Simcenter Studio, System Architect, Systems Architecture Modeler (SAM), System Composer,
Windchill Modeler. Simulation Engineers may use architectural modeling tools to ensure that system
models accurately represent the structure, behavior, and interactions of the system, enabling better
integration of simulations within the overall system architecture. This improves traceability, enhances
communication between engineering disciplines, and reduces the risk of inconsistencies in later
development stages.

3.3 System Simulation

System Simulation (Figure 5, top-right) allows engineers to virtually test the behavior of a Sol (before
physical implementation). Strictly speaking, whether a simulation is classified as a System Simulation

11/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

depends on the definition of the System of Interest (Sol); any simulation can serve this role if it analyzes
the system at the appropriate level. The term System Simulation is usually associated with Time-
Continuous (TC) lumped parameter modeling and simulation (e.g., Modelica [32]). However, the

term System Simulation depends on what is required to model the Sol and its underlying elements. In
addition, it depends on what requirements and issues/concerns are to be investigated, what
computational approach/tools are to be used to perform the analysis, the number of computations (a
single analysis vs. a trade-off analysis or optimization), and the available computational resources and
personnel vs. the time to deliver results, the available budget, and the required degree of predictability.

Classical TC system simulation approaches use lumped-parameter and zero or one-dimensional
(OD/1D) simplifications of three-dimensional (3D) field physics equations, e.g., provided by open-source
languages Modelica [32] or Julia’s ModelingToolkit [33] that are often at the core of system simulation
tools such as the open-source OpenModelica or commercial offerings such as Dymola, MapleSim,
Modelon Impact, SimulationX, or JuliaSim. However, since not all TC system simulation tools are rooted
in and built on open-source languages, a large variety of partly proprietary languages and solvers exist,
from multi-purpose tools (that often also support Modelica) such as Amesim, Simscape, Twin Builder
and Twin Al to dedicated tools serving specific engineering fields (e.g., Flomaster, Thermal Desktop).
Typically, their common ground is their foundation that is based on Bond Graphs [34] which facilitate
multi-physical and domain-independent modeling and simulation of dynamic system behavior based on
energy equivalence and generalized effort and flow variables (e.g., voltage and current, or pressure
and volumetric flow rate). 0D/1D physical behavior models of systems are defined typically by single
nodes of lumped parameters (e.g., density as a field property lumped into a single mass at a particular
point in space) arranged as independent discrete entities that are described either by mathematical
specifications or by executable code containing differential, algebraic and/or discrete equations.
However, in the 21st century, all those approaches need to be supplemented by controller algorithms,
embedded software, electrical circuit analyses, etc. For an arbitrary Sol, these approaches (and tools)
are typically used at the Sol context and higher architectural levels, although they may also be utilized
to build fast-computing simulation models for investigating dynamic behavior on lower levels.

Discrete Event Simulations (DES) are also a very relevant field of system simulation for analyzing
logical behavior as well as scheduling, resource allocation, and capacity planning. In contrast to TC
approaches, DES quantities of interest are typically of type Boolean or Integer, for example, humans,
information or material packages, objects, etc. They complement system architecture modeling to
simulate how a system will logically behave when subjected to various operational conditions,
constraints, and environmental factors. Note that some system architecture modeling tools or dedicated
engines such as Cameo Simulation Toolkit, Rhapsody Designer, or the Behavior Execution Engine
(BEE) have the capability to directly execute the behavioural part of architectural models (Model
Behavior Execution in Figure 5, left) using execution semantics for state machines [23] and activities
[35], [36], allowing for some (limited) DES. However, specialized and more capable DES tools are very
often used. For instance, some domain-specific architecture modeling tools provide DES capabilities
leveraging the execution semantics built-in the underlying model language [27], [28]. Prominent
general-purpose open-source examples are JaamSim and PySim, commercial examples are AnyLogic,
DELMIA, or Simulink SimEvents. For an arbitrary Sol, these approaches (and tools) are typically used
at the higher architectural levels as this is where logical and temporal system behavior is usually
specified and analyzed.

Mission analysis tools that enable operational analysis within a four-dimensional (3D spatial + time)
physics-based environment are critical for evaluating the behavior and interactions of systems or
systems of systems within specified domains of interest. For instance, in the Aerospace & Defense
domain NASA has created the open-source General Mission Analysis Tool (GMAT), commercial
examples are FreeFlyer and STK. In the Automotive domain, an open-source example is CARLA and
commercial examples include Adams Car, CarMaker, the Matlab Vehicle Simulation Tools, and Morai.
These tools typically represent the Sol and other entities such as interacting systems as point masses
with defined behavioral descriptions, allowing for precise modeling of their motion and dynamics as well
as logical (and to a limited extend physics-based) behavior and interactions in realistic contexts. By
incorporating environmental factors such as gravitational forces, atmospheric effects, and spatial
constraints, these simulations provide a robust framework for analyzing system performance and
interactions over time. This approach is particularly valuable for scenarios requiring detailed
assessments of operational behavior, such as mission planning, trajectory optimization, and the
evaluation of system interoperability in complex, interconnected environments. For an arbitrary Sol,
these approaches (and tools) are typically used at the System of Systems (SoS) or System context

12/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

level to develop OpsCons as they evaluate how the Sol interacts with its surroundings. Note that many
system simulation tools can also be used at the SoS or System Context level, because the context itself
is simply another system. For example, a valve in a heat pump, within a house, connected to an energy
grid.

3.4 High-fidelity CAE and 2D/3D approaches

As opposed to a System Simulation, the scope of high-fidelity CAE (Figure 5, bottom-right) is narrower,
focusing on parts or assemblies, and typically addressing the 2D or 3D design. Traditionally, CAE is
associated with continuum mechanics simulation approaches for solving 3D spatial fields in steady-
state or transient states, and typically used for performing simulations of the physical response of an
Sol that result from applied physical loads. For instance, Computational Structural Mechanics (usually
referred to as Finite Element Analysis, FEA) and Computational Fluid Dynamics (CFD) solvers, with
different numerical approaches ranging from mesh-based discretization concepts such as Finite
Element Method (FEM) or Finite Volume Method (FVM) to mesh-less methods such as the Lattice-
Boltzmann-Method (LBM), the Smooth Particle Hydrodynamics (SPH) method or the Discrete Element
Methods (DEM) for particle-particle interaction.

For an arbitrary Sol, all these approaches are typically used on lower system element levels to perform
detailed, higher-fidelity simulations to analyze the 3D physics in detail, and usually later in the
development when 3D geometry information becomes available. Occasionally, they may be employed
for system simulations, e.g., when the system-level requirement or issue to be analyzed requires 3D
information. Hybrid approaches that supplement a lumped-parameter system simulation approach with
2D or 3D information where needed, are a promising way to address the computational speed vs.
predictive capability tradeoff, e.g., Thermal Desktop for fluid-thermal-radiation analyses.

Both System Simulation and CAE approaches are also used in conjunction with performing optimization
trade-off studies to refine the design characteristics of the Sol elements and their associated functions
relative to attaining optimum performance in verifying the targeted requirements of the Sol. Over time,
both approaches have been exploited as integral concepts during all phases of the product/Sol lifecycle,
ranging from (a) simulation-driven design parametric studies, (b) generative design optimization based
on specified design spaces and system requirements, (c) Al-driven system simulations, as well as (d)
lending themselves to larger roles during final simulation-based certification of Sol’s.

3.5 Auxiliary technologies

Very often, a system is multidisciplinary and might require multiple computing approaches to simulate
it. The two different approaches for orchestrating the use of multiple simulation tools may be categorized
as follows:

1. Simulation workflows (Figure 5, center) allow for chaining different kinds of solvers to
generate more complex, multi-physics simulation workflows to facilitate Multi-Disciplinary
Analysis and Optimization (MDAOQO) as well as Process Integration and Design Optimization
(PIDO). This approach is suitable for automating the facilitation of design explorations, model
calibrations, trade studies, and optimization. However, this approach is typically not desirable
for exchanging information during runtime but rather to propagate information sequentially or
concurrently. Examples include commercial tools such as HEEDS, iSight, ModeFrontier,
ModelCenter, optiSLang, pSeven or open-source frameworks such as Dakota and
OpenMDAO, some of which feature direct MBSE connectivity to facilitate data flow as indicated
by the grey arrows in Figure 5.Figure 5

For an arbitrary Sol, these approaches (and tools) are used on all architectural levels, but may
be referred to differently (e.g., MDAO vs PIDO), depending on the particular field/school of
thought.

2. Co-Simulators (Not explicitly shown in Figure 5 but lumped together with System Simulation)
allow different simulation models to be connected directly for exchanging data during runtime.
This is well supported, for example, by the FMI standard [37] which specifies the packaging
and containerization of simulation models into Functional MockUp units (FMUs). In addition,
the SSP standard [38] provides a suitable means to specify and implement composite system
simulation models by incorporating interconnected component models (e.g., FMUs) to facilitate
the exchange of architectural simulation specifications and their incremental refinement in
collaborative development processes. Examples include most system simulation tools (e.g.,
Amesim, Dymola, Modelon Impact, TwinBuilder, Twin Al) and platforms such as ICOS and its

13/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

commercial implementation ModelConnect and CoSim but also industry specific environments
such as the Open Simulation Platform [39], [40] in the Maritime industry.

For an arbitrary Sol, these approaches (and tools) are typically used on the higher levels of the
architecture or the system context because here (domain-specific) models simulating specific
behavior of system elements are usually composed to evaluate emergent behavior of the Sol.
A classic use case is the composition of several models generated by suppliers and provided
to an OEM for system simulation purposes.

While historically these approaches have been independent, their integration and linkage is advancing,
either by new tools combining some of the underlying use cases and approaches in a single tool (e.g.,
classical system simulation tools that also act as co-simulation tools), by facilitating the informational
exchange between tools via (standardized) APIs (in Figure 5, center), or by model
orchestrators that natively connect to an architectural model for oversight of the data flow in the form of
requirements and value properties (grey arrows in Figure 5, center). Example tools for the latter include
ModelCenter for SysML v1 and v2 and to some extent ModeFrontier for SysML v1.

Another example for better linkage of MBSE and Simulation is the transformation of an architecture to
a system simulation model. For the case of SysML and Modelica as well as Simscape, this
transformation may be achieved by implementing the SysML v1 Extension for Physical Interaction and
Signal Flow Simulation (SysPhys) [41] or its future enhanced SysML v2 extension [42]. Other examples
include the SysML Extension for Logistics Modeling and Analysis (SysLMA) [43] and a SysML to SSP
transformation [44]. Typically, such a transformation is only performed on the higher system architecture
hierarchy levels, and simulation-specific detailing on the Simulation side, e.g., in Modelica and
Simscape tools, is often required to make the model executable. The transformation may be performed
iteratively in either direction to account for changes of the architecture and insights provided by the
executed simulations [45], [46].

4 Integration of Simulation within SE and MBSE Frameworks

4.1 How simulation models contribute to and benefit from SE and MBSE

Physics-based (and increasingly data-driven) approaches for both System Simulation and CAE are vital
for verifying system designs, helping to assess performance, risks, and optimization trade-offs
throughout the product development process and in support of the operations and maintenance of the
product throughout its lifecycle. By aligning simulations with SE/MBSE workflows, engineers can ensure
that all simulations are integral to the decision-making processes. Simulation helps define and refine
requirements, supports system architecture development, contributes to system-level analyses, and
specifically allows for early-stage virtual verification, design space analysis, and optimization prior to
the acquisition of costly hardware. In the context of Analyses and V&V by Simulation, Simulation
provides new insights like the sensor value in a feedback control loop [16]. As this occurs repeatedly
over time, and recursively on all architectural levels (see Section 1.3 and Figure 1), the number of
models and amount of data and informational relationships to be managed becomes huge.

Three key questions arise:
1. What has to be analyzed and/or virtually verified, i.e., simulated?

2. What approaches and tools will be used and how will the simulation models be created to
perform the simulation?

3. How are the simulation models and data managed over time and how are they linked to the
respective architectural elements and requirements of the Sol?

4.2 Clarifying what must be simulated

Systems and Simulation Engineers should mutually agree on the objectives and the scope of a
simulation. Classical points of discussion are the precise questions to be answered by the simulation,
what the simulation model input and output parameters should be, and the resolution over time and
duration of simulation time. In addition, there needs to be an agreement with respect to the time required
to develop the model, a schedule relative to when the results are required, the available computational
resources, the available budget, and the required degree of predictability in the results. As for the latter,
it is crucial to describe how to balance model complexity with the need for sufficiently accurate, reliable
simulation outputs, emphasizing simulation model validation and verification practices that maintain the
required model fidelity without unnecessary over-complexity. This is first and foremost a communication

14/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

challenge where Systems and Simulation Engineers need to find a common ground relative to their
respective terminologies and nomenclatures.

The specification of an analysis or simulation from an SE standpoint may be included in the architectural
model using a consistent set of analysis specifications allowing Simulation Engineers and their tools to
directly infer simulation needs from the system model. For instance, SysML v2 [30] is an important step
forward as it not only improves the SysML v1 semantics and includes a standardized API, but it also
provides language constructs for specifying different types of analyses. As exemplified by Figure 6 for
the case of an automotive vehicle, three types of simulation specification constructs exist in SysML v2

[30], [47]:

1. Analysis: This construct enables the specification of analytic activities within a system model,
allowing Simulation Engineers to formally capture, document, and communicate specific
analyses conducted throughout the system design and validation phases. Understanding and
applying this concept helps ensure that the analysis results are aligned with the Sol’s system
requirements, structure and behavior.

2. Trade Study: This construct allows for specification of a methodical comparison of design
alternatives to evaluate their relative benefits, risks, and trade-offs. Simulation Engineers and
System Engineers alike use a Trade Study to systematically model and evaluate alternative
design scenarios, helping stakeholders make informed decisions based on quantifiable metrics
from simulations.

3. Verification: This construct focuses on verifying that the system meets defined requirements
by integrating verification tasks directly within the model. For Simulation Engineers, this
facilitates the alignment of verification simulations with system objectives, enabling traceability
and clarity about how simulations are used to verify requirements.

S \
s - N S A
% «analysis» W CTradeSudy» «verification»
subject engineTradeOffAnalysis massVerification Test
M e (21> voncle_b objective
> Vi
doc Estimate the vehicle .«m‘."l’:f.‘fﬁv — e MamzeObicvo doc Verify majssRequ irement is
- doc Seled vehicle alternative with the engine . ..
whose evaluation function returns the max value satisfied
parameters alternatves e
Q_scenario:Scenario vehicle_b_enginedcyl:>vehicleAlternatives SUbIeCt
9 calculatedFuelEconomy :>km/l vehicle_b_engine6eyl:>vehicleAtternatves v:Vehicle:>vehicle b
attibutos >> e\ralumnonFund|on¢;ak:s i
te = TraveledDistance(scenario) - actions
b = AverageTravelTimePerDistance(scenario) in part vehicle >vehicle_b;
IComputeBSFC(vehicle_b.engine) retum attribute eval Real-EngineEvaluaton collectData
estF uelC: i 1 i b.mass, bsfc, (vehicle.engine mass,
b, distance) - v::ccll: engine. 'p::é:ovsof’ovm processData
3) } i i engine. iciency, . H
'|mgFueIcor\sun\oborfuﬁn\e(vghcle__;!?.'ej:’gll:'p:)_aw) vehicle engine.cos0) evaluateResult : Verdict

Simulations are conducted in dedicated tools & results are fed back to the architectural model.

[o T]

Figure 6. Examples of SysML v2 analysis constructs allowing for model-based specification
of simulation needs (adopted from [47], figures courtesy of Ansys/Synopsys).

These features are relevant for Simulation Engineers as they formally specify simulation needs and
tasks directly in the system model, making it easier to communicate scope and findings, verify
compliance, and explore design options in a model-based manner. Moreover, simulation tools can
directly access these formal specifications, either through the SysML v2 API or via a tool orchestrator
with MBSE connectivity such as ModelCenter, allowing them to retrieve required input parameters
(including numerical values) and feed computational results back into the system model.

4.3 Building simulation models and performing simulations

Assuming that it has been mutually agreed on What must be simulated (see Section 4.2), the details of
what approaches and tools are to be used in addressing the simulation request, building and creating
the required simulation models needed, and performing the required simulations are the realm and
responsibility of the Simulation Engineer. The initial steps will include identification of the

15/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

approximations and assumptions that the conceptual model will entail and what mathematical
formulations of typically physical laws will be used to characterize the phenomena of interest, followed
by transforming it into a computational model that will be executed to generate the simulation results.
V&V of simulation results as described in Section 1.2 is crucial in ensuring simulation credibility.
Additionally, Sensitivity Analysis and Uncertainty Quantification (UQ) are highly relevant, as they help
assess how the simulation inputs influence outputs and provide a measure of uncertainty in empirical
data or simulation results [9].

4.4 Managing simulation models & data, and linking with MBSE artefacts

As mentioned earlier, the growth of data generated through simulation not only continues to increase
but it is accelerating in its growth, i.e., it is growing exponentially. Data is a key asset. The way data
and related information are being accessed and used is a measure of how efficient an engineering
organization operates. Often, the time spent on those activities is typically between 20-40% of all
engineering activities [48], [49].

SPDM has been playing a central role in managing engineering simulation processes, enabling the re-
use of assets (models with their associated requirements and best practices), especially by the recent
implementation of digital threads that provide connectivity between the various engineering domains
associated with the lifecycle of Sols. Furthermore, it drastically increases productivity in the simulation
space while at the same time enables effective collaboration throughout the engineering community,
and with non-simulation experts and decision makers.

With its integration into the overall data and process management ecosystem of an organization, such
as PLM (Product Lifecycle Management), RM databases and ALM (Application Lifecycle Management)
to name a few, the digital thread enablement will ensure that the right model and release level are made
available and used by the various participants throughout the entire product lifecycle.

5 Future Trends & the Evolving Role of Simulation Engineers

The future will be driven by business and engineering processes, which will be ultimately model-based.
The understanding of MBE and model-based enterprises will be front and center. That imposes a
change in the role of Simulation Engineers and an acknowledgment of the future trends in SE/MBSE
and MBE. Admittedly, the fields of SE and MBSE, as well as the role of SE, must change and evolve to
support the switch to a model-based design philosophy. However, this will be the subject of another
publication.

5.1 The Evolving Role of Simulation Engineers

The typical role of the engineering simulation expert will need to adjust to the foregoing noted trends.
There is a shift toward a more integrated, collaborative approach with Systems Engineers and other
SMEs, requiring a broader understanding of various engineering domains (e.g., electrical, mechanical,
software). Simulation Engineers will need to cultivate skills that extend beyond their traditional domain
expertise to collaborate effectively with cross-functional teams. For instance,

1. Clarify Objectives: Clearly agree and communicate the goals, capabilities, and limitations of
models and simulations, helping non-simulation stakeholders understand what a model and its
predictions can and cannot represent and what role it fulfills within the Sol.

2. Simplify Technical Jargon: Simplify technical details, using analogies or visualizations to
communicate complex simulation results to non-experts, such as project managers and
Systems Engineers.

3. Collaborative Mindset: Be proactive in cross-disciplinary meetings, ensuring that simulation
insights and limitations are considered early in the design process and understood by other
disciplines.

4. Adopt SE/IMBSE concepts: Familiarize with SE/MBSE aspects such as the Vee Model and
the different types of analyses to align simulations with SE work items and system lifecycle
stages.

5. Use Collaborative Tools: Familiarize with collaborative tools used in SE/MBSE, such as
systems modeling tools (SysML), requirements management systems, and lifecycle
management tools.

6. Improve Model Integration: Reduce classical documentation and reporting of simulation
results (unless needed for approval or legal reasons) and integrate more seamlessly with

16/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

SE/MBSE models where technically feasible, facilitating information consistency, traceability,
and speed-up.

5.2 Major future engineering trends

While prognosis of the future is always risky and typically incorrect, the following points illustrate current
and ongoing developments as well as potential future changes:

1.

Digital Transformation: Emerging digital technologies such as data-driven Al and Machine
Learning and their integration into MBSE and Engineering Simulation workflows and tools, and
real-time simulations and Digital Twins will significantly impact engineering simulation practices
and will require continuous change and adaption for all engineering disciplines [3].

Shift Toward Model-Centric Engineering: There will be an emphasis on moving from design-
driven disconnected processes toward increasingly connected model-based processes, where
simulation will play an even more critical role in virtualizing more and more at all stages of the
entire system lifecycle. Engineers will need to be comfortable working with integrated digital
twins and evolving system models [3].

Enhanced Collaboration and Interoperability: SE, MBSE, and MBE will foster closer
collaboration between Simulation Engineers and other pertinent engineering disciplines/SMEs
in not only sharing simulation approaches, tools and results on specific projects, but also
connecting models of all sorts and across architectural levels leading to more optimized, real-
time decision-making. Interoperability utilizing standards will not only allow easier exchange of
model and data between physics domains but also organizational domains [3].

Data and Process Management Across Domains: In SE, the concept of configuration
management ensures, both on the Sol and all system element levels, that all potential solution
candidates and variants, and their respective versions, are governed and tracked over time as
the development of the Sol evolves. While MBSE authoring tools inherently allow management
of variants and design candidates in the form of so-called 150% models and usually also
provide some means of versioning, integration with PLM, ALM, SPDM and RM databases is
required to enable the Digital Thread throughout engineering to manage all analyses (models
and data) in conjunction with the system model.

Consistency Management Framework: Effective implementation of holistic MBE principles
requires that all pertinent engineering-related data for a Sol and its sub-systems be integrated
throughout its Design, Development, any related Physical Testing, Manufacturing techniques,
and Operations. Basically, this is an extension of the foregoing item 4 towards integration of all
relevant disciplines within the entire enterprise. The objective is to create a set of federated and
linked databases entailing not only RM, MBSE, MBE, SPDM, but also ALM, PLM, Enterprise
Resource Planning (ERP), and all other pertinent databases (e.g., test data, marketing data,
...). Such an infrastructure fosters the development of a Consistency Management Framework
[50] for enabling conformity throughout the total lifecycle of a product or process, beginning
with its initial conceptual requirements through its retirement. Most of the engineering data is
defined by a combination of descriptive, physics-based, and data-driven models for the Sol that
depict its Requirements, Structure and Behavior. The Behavior models may be 0D-to-3D, TC
or DES, single-disciplined or multidisciplined, stored on source code or proprietary data
formats, and may be either single or multi-fidelity in nature. This overall approach to MBE lends
itself to attaining a cross-domain Consistency Management Framework for enabling conformity
of all the pertinent engineering and enterprise information throughout the total lifecycle of a
product or process, often supported by Global Configuration Management to achieve a
coherent baseline of engineering artefacts across all the different databases.

6 Conclusions

This paper provides essential knowledge and practical insights to bridge the gap between Simulation
Engineers, Systems Engineering (SE), Model-Based Systems Engineering (MBSE) and Model-Based
Engineering (MBE) practices. By illustrating key concepts and approaches and relating these with
typical simulation approaches, it has been demonstrated how Simulation Engineers can effectively align
their work with system-level objectives, enhance communication across engineering domains, and
integrate simulation models into system architectures.

17/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

The tighter integration of simulation within SE, MBSE and MBE frameworks ensures better
management of complexity, improved traceability, and more effective V&V processes throughout the
system lifecycle. By adopting these practices, Simulation Engineers can move beyond isolated
technical contributions to become strategic partners in modern engineering projects.

As SE, MBSE and MBE continue to shape the future of engineering, the ability to navigate these
domains and contribute seamlessly to interdisciplinary teams will define the next generation of
simulation professionals. This paper serves as a practical guide and foundational resource to support
Simulation Engineers on that journey. In a similar manner, the role and capabilities of System Engineers
need to evolve; we aim to address this subject in a subsequent publication.

7 Disclaimer

The tools mentioned in this paper are provided as examples to illustrate different modeling and
computational areas relevant to SE, MBSE, and simulation. Their inclusion does not imply endorsement
or recommendation over other available solutions. Readers are encouraged to explore the INCOSE/PPI
Systems Engineering Tools Database (SETDB) and the INCOSE Systems Engineering Lab (SE Lab)
to identify and evaluate tools that best suit their specific needs and use cases.

8 Acknowledgement

We acknowledge the joint NAFEMS INCOSE Systems Modeling and Simulation Working Group
(SMSWG), and we are particularly grateful for the discussions in the SMSWG with our colleagues Greg
Garstecki and Peter Coleman who helped shape some of the ideas conveyed in this paper. We also
thank the anonymous reviewer for their valuable suggestions and improvements.

9 Nomenclature

0D/1D Zero-dimensional/One-dimensional

3D Three-dimensional

AADL Architecture Analysis & Design Language
Al Artificial Intelligence

ALM Application Lifecycle Management

API Application Programming Interface

ASoT Authoritative Source of Truth
CAD Computer-Aided Design
CAE Computer-Aided Engineering
CFD Computational Fluid Dynamics
ConOps | Concept of Operations
DEM Discrete Element Method
DES Discrete Events Simulation
ERP Enterprise Resource Planning
FEA Finite Element Analysis
FEM Finite Element Method
FMU Functional MockUp Units
FVM Finite Volume Method
ICD Interface Control Document
INCOSE | International Council on Systems Engineering
LBM Lattice-Boltzmann-Method
MBE Model-based Engineering
MBSE Model-based Systems Engineering
MoE Measures of Effectiveness
MoP Measures of Performance
MDAO Multi-Disciplinary Analysis and Optimization
OPM Object-Process Methodology
OpsCons | Operational Concepts
PIDO Process Integration and Design Optimization
PLM Product Lifecycle Management
RM Requirements Management
SE Systems Engineering

18/22

https://www.systemsengineeringtools.com/
https://www.systemsengineeringtools.com/
https://www.incose.org/learn/se-laboratory
https://www.nafems.org/community/working-groups/systems-modeling-simulation/discussion/?post_id=5147
https://www.incose.org/communities/working-groups-initiatives/incose-nafems-collaboration

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

SME Subject Matter Expert

SMSWG | Systems Modeling & Simulation Working Group

Sol System of Interest, often equivalent to the product an organization develops for commercial gain

SPH Smooth Particle Hydrodynamics

SPDM Simulation Process and Data Management

SysML | Systems Modeling Language

SoS System of Systems

SysPhys | SysML v1 Extension for Physical Interaction and Signal Flow Simulation

TC Time-Continuous

VHDL Very High Speed Integrated Circuit Program Hardware Description Language

V&V Verification and Validation

10 References

[11 W. Rogers et al., “Report of the Presidential Commission on the Space Shuttle
Challenger Accident, Volume 1,” 1986.

[2] INCOSE, “A Complexity Primer for Systems Engineers,” International Council on
Systems Engineering (INCOSE), TP-2021-007-01, 2021.

[8] INCOSE Systems Engineering Vision 2035, “Systems engineering vision 2035,” The
International Council on Systems Engineering (INCOSE), 2022.

[4] A.Busch, R. Dreisbach, and F. Popielas, “What Do Simulation Engineers Need To
Know About Systems Engineering And MBSE,” in Proceedings of the 20th NAFEMS World
Congress (NWC) 2025, Salzburg, Austria: NAFEMS Ltd., May 2025. [Online]. Available:
https://www.nafems.org/publications/resource_center/nwc25-0007421-paper

[6] A. Busch, “What Simulation Engineers Need to Know About MBSE — Bridging Two
Worlds,” presented at the NAFEMS ASSESS Insight Webinar: What Simulation Engineers
Need to Know About MBSE — Bridging Two Worlds, Virtual, Nov. 11, 2025. [Online].
Available: https://www.nafems.org/events/nafems/2025/what-simulation-engineers-need-to-
know-about-mbse-bridging-two-worlds/

[6] INCOSE SEHv5, Systems Engineering Handbook: A Guide for System Life Cycle
Process and Activities (5th ed.). D. D. Walden, T. M. Shortell, G. J. Roedler, B. A. Delicado,
O. Mornas, Yip Y. S., and D. Endler (Eds.)., 5th ed. Hoboken, New Jersey: John Wiley &
Sons, Inc., 2023.

[71 INCOSE UK, “Z8: What is Systems Architecture?,” International Council on Systems
Engineering (INCOSE) UK, liminster, June 2024. [Online]. Available:
https://incoseuk.org/Normal_Files/Publications/zGuides

[8] ISO/IEC/IEEE 15288:2023, ISO/IEC/IEEE 15288:2023 - Systems and software
engineering - System life cycle processes, 2023.

[91 ASME VVUQ, Verification, Validation, and Uncertainty Quantification Terminology in
Computational Modeling and Simulation. New York, NY: American Society of Mechanical
Engineers (ASME), 2022. [Online]. Available: https://www.asme.org/codes-standards/find-
codes-standards/verification-validation-and-uncertainty-quantification-terminology-in-
computational-modeling-and-simulation/2022

[10] NAFEMS, “What Is Verification and Validation?,” NAFEMS Ltd., 2009. [Online].
Available:
http://www.nafems.org/downloads/working_groups/amwg/4pp_nafems_asme_vv.pdf

[11] H. Mooz and K. Forsberg, “A Visual Explanation of Development Methods and
Strategies including the Waterfall, Spiral, Vee, Vee+, and Vee++ Models,” INCOSE

19/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

International Symposium, vol. 11, no. 1, pp. 610-617, July 2001, doi: 10.1002/j.2334-
5837.2001.tb02348 x.

[12] K. Forsberg and H. Mooz, “System Engineering for Faster, Cheaper, Better,” INCOSE
International Symposium, vol. 8, no. 1, pp. 917-927, July 1998, doi: 10.1002/j.2334-
5837.1998.tb00130.x.

[13] K. Forsberg and H. Mooz, “The relationship of system engineering to the project
cycle,” in Proceedings of the 1st Annual Symposium of the National Council on Systems
Engineering, Chattanooga, Tennessee: The National Council on Systems Engineering
(NCOSE), 1991. doi: 10.1002/j.2334-5837.1991.tb01484 .x.

[14] K. Forsberg, “If | could do that, then | could ...: Systems engineering in a research and
development environment,” Proceedings of the 5th Annual International Symposium of the
International Council on Systems Engineering, The International Council on Systems
Engineering (INCOSE), 1995.

[15] IEC 29148, “IEC 29148:2018 - Systems and software engineering—Life cycle
processes—Requirements engineering,” International Electrotechnical Commission (IEC),
Geneva, 2018. [Online]. Available: https://webstore.iec.ch/publication/64315

[16] A. Busch and G. Garstecki, “Generalizing the Systems Engineering Vee - Introducing
time as a third dimension and refining the role of analysis tools,” presented at the 35th
Annual INCOSE International Symposium (IS) 2025, Ottawa, Canada, July 31, 2025. doi:
10.13140/RG.2.2.13147.43049.

[17] VDI 2206, “VDI 2206:2004 - Design methodology for mechatronic system.” Verein
Deutscher Ingenieure (VDI), VDI-Fachbereich Produktentwicklung und Mechatronik, 2004.
[Online]. Available: https://www.vdi.de/richtlinien/details/vdi-2206-entwicklungsmethodik-
fuer-mechatronische-systeme

[18] INCOSE UK, “Z9: What is Model-Based Systems Engineering,” International Council
on Systems Engineering (INCOSE) UK, liminster, July 2020. [Online]. Available:
https://incoseuk.org/Normal_Files/Publications/zGuides

[19] N. Shevchenko, “An Introduction to Model-Based Systems Engineering (MBSE).”
Accessed: Jan. 27, 2025. [Online]. Available: https://doi.org/10.58012/d464-qf49

[20] NDIA, “Final Report of the Model Based Engineering (MBE) Subcommittee,” National
Defense Industrial Association (NDIA), Systems Engineering Division, M&S Committee, Feb.
2011. Accessed: Nov. 03, 2023. [Online]. Available: https://www.ndia.org/-
/media/sites/ndia/meetings-and-events/divisions/systems-engineering/modeling-and-
simulation/reports/model-based-engineering.ashx

[21] E. P. Stabler, “System Description Languages,” IEEE Transactions on Computers, vol.
C-19, no. 12, pp. 1160-1173, Dec. 1970, doi: 10.1109/T-C.1970.222855.

[22] R. L. Ackoff, “Towards a System of Systems Concepts,” Management Science, vol. 17,
no. 11, pp. 661-671, July 1971, doi: 10.1287/mnsc.17.11.661.

[23] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231-274, June 1987, doi: 10.1016/0167-6423(87)90035-9.

[24] “Arcadia Reference Documents.” Accessed: Jan. 18, 2025. [Online]. Available:
https://mbse-capella.org/arcadia-reference.html

[25] ISO/PAS 19450, “Automation systems and integration - Object-process methodology
(OPM),” The International Organization for Standardization (ISO), 2015.

[26] SAE AS5506D, Architecture Analysis & Design Language (AADL). [Online]. Available:
https://www.sae.org/standards/content/as5506d

20/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

[27] |EEE 1076-2019, 1076-2019 - IEEE Standard for VHDL Language Reference Manual,
Dec. 23, 2019. doi: 10.1109/IEEESTD.2019.8938196.

[28] IEEE 1076.1-2017, 1076.1-2017 - IEEE Standard VHDL Analog and Mixed-Signal
Extensions, Jan. 26, 2018. doi: 10.1109/IEEESTD.2018.8267464.

[29] OMG SysML® 1.7, “OMG System Modeling Language (SysML®), v1.7.” Object
Management Group, Inc. (OMG), Milford, MA, 2024. [Online]. Available:
https://www.omg.org/spec/SysML/1.7

[30] OMG SysML® 2.0 API, “OMG System Modeling Language (SysML®), 2.0.” Object
Management Group, Inc. (OMG), Milford, MA, Sept. 03, 2025. [Online]. Available:
https://www.omg.org/spec/SysML/

[31] OMG SysML® 2.0, “Systems Modeling Application Programming Interface (API) and
Services.” Object Management Group, Inc. (OMG), Milford, MA, Feb. 2025. [Online].
Available: https://github.com/Systems-Modeling/SysML-v2-Release

[32] Modelica Association, Modelica Standard Library Documentation, Version 3.2.3.
Linkdping: Modelica Association, 2019. [Online]. Available: https://doc.modelica.org/

[33] ModelingToolkit.jl, Modeling Toolkit.jl. Accessed: Feb. 07, 2025. [Online]. Available:
https://docs.sciml.ai/ModelingToolkit

[34] J. F. Broenink, “Introduction to Physical Systems Modelling with Bond Graphs,” in SIE
Whitebook on Simulation Methodologies, 1999, pp. 1-31. [Online]. Available:
https://www.ram.ewi.utwente.nl/bnk/papers/BondGraphsV2.pdf

[35] C. Bock, “SysML and UML 2 support for activity modeling,” Syst. Engin., vol. 9, no. 2,
pp. 160-186, 2006, doi: 10.1002/sys.20046.

[36] OMG, FUML Semantics of a Foundational Subset for Executable UML Models, 2021.
[Online]. Available: https://www.omg.org/spec/FUML

[37] FMI, Functional Mock-up Interface (FMI) 3.0, 2024. Accessed: Jan. 27, 2025. [Online].
Available: https://fmi-standard.org/

[38] SSP, System Structure and Parameterization (SSP) 2.0, 2024. Accessed: Jan. 27,
2025. [Online]. Available: https://ssp-standard.org/

[39] Open Simulation Platform. Accessed: Feb. 13, 2025. [Online]. Available: https://open-
simulation-platform.github.io/

[40] F. Perabo, D. Park, M. K. Zadeh, O. Smogeli, and L. Jamt, “Digital Twin Modelling of
Ship Power and Propulsion Systems: Application of the Open Simulation Platform (OSP),” in
2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands:
IEEE, June 2020, pp. 1265-1270. doi: 10.1109/ISIE45063.2020.9152218.

[41] OMG SysPhS 1.1, “SysML Extension for Physical Interaction and Signal Flow
Simulation, v1.1.” Object Management Group, Inc. (OMG), Milford, MA, 2021. [Online].
Available: https://www.omg.org/spec/SysPhS/

[42] NIST, SysPhs v2 Prerelease 3. Accessed: Feb. 08, 2025. [Online]. Available:
https://github.com/usnistgov/saismo/releases/tag/sysphsv2-prerelease3

[43] R. Barbau and C. Bock, “SysML Extension for Logistics Modeling and Analysis
(SysLMA),” National Institute of Standards and Technology, Gaithersburg, MD, NIST IR
8571, 2025. doi: 10.6028/NIST.IR.8571.

[44] J. Cederbladh and D. Krems, “Early Validation of SysML Architectures by Extending
MBSE with Co-Simulation using FMI and SSP,” INCOSE International Symp, vol. 34, no. 1,
pp. 106—121, July 2024, doi: 10.1002/iis2.13135.

21/22

Busch et al. / Engineering Modelling, Analysis and Simulation Vol. 3, Issue 1 (2026)

[45] A. Busch, “Challenges and trends for connecting System Architecture Modeling and
Behavioral Simulation,” presented at the The 34th Annual INCOSE International Symposium
(IS) 2024, Panel “Building the digital bridge between MBSE and Engineering Simulation,”
Dublin, Ireland, July 02, 2024.

[46] J. Matam and S. Pavalkis, “Open standards SysML and Modelica Integration strategy,”
presented at the INCOSE Western States Regional Conference (WSRC) 2023, 2023.

[47] S. Friedenthal, “Introduction to the SysML v2 Language - Graphical Notation,” Mar. 07,
2023. [Online]. Available: https://github.com/Systems-Modeling/SysML-v2-
Release/tree/master/doc

[48] IDC, “The State of Data Discovery and Cataloging,” International Data Corporation
(IDC), commissioned by Alteryx, Jan. 2018. Accessed: Feb. 11, 2025. [Online]. Available:
https://www.datateam.mx/downloads/alteryx/The_State_of Data_Discovery _Cataloging.pdf

[49] S.Feldman and C. Sherman, “The High Cost of Not Finding Information,” International
Data Corporation (IDC), 2001.

[50] B. Schindel, “Consistency Management as an Integrating Paradigm for Digital Life
Cycle Management with Learning,” INCOSE/OMG MBSE Patterns Working Group, Apr. 12,
2021. [Online]. Available:
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--
_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.3.1.pdf

22/22

