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Abstract 

In this paper the accuracy and robustness of quality measures for the assessment of machine learning 
models are investigated. The prediction quality of a machine learning model is evaluated model-
independent based on a cross-validation approach, where the approximation error is estimated for 
unknown data. The presented measures quantify the amount of explained variation in the model 
prediction. The reliability of these measures is assessed by means of several numerical examples, 
where an additional data set for the verification of the estimated prediction error is available. 
Furthermore, the confidence bounds of the presented quality measures are estimated and local quality 
measures are derived from the prediction residuals obtained by the cross-validation approach. 
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1 Introduction  
Nowadays, the application of mathematical surrogate models plays an important role in engineering 
design. Starting with classical Design of Experiment schemes and classical polynomial response 
surface models [1], [2], meanwhile a wide range of surrogate models has been developed such as 
Kriging [3], Moving Least Squares [4], Radial Basis Functions [5] and Support Vector Machines [6]. 
Recently, artificial neural networks [7] have been extended to more sophisticated Deep Learning 
models [8] which can be applied to a very wide range of engineering fields [9]. A good overview of 
current applications of surrogate models in global optimization is given in [10] and recent developments 
in surrogate-assisted global sensitivity analysis can be found in [11]. Investigations on the accuracy of 
machine learning models for uncertainty quantification are published in [12], [13]. Further reviews on 
engineering applications are available in [14], [15], [16]. 
Generally, the application of surrogate models will introduce an additional model error in the prediction. 
Dependent on the application, the assessment of the approximation quality and the verification of the 
surrogate model with unknown data is very important as discussed in [17], [18]. A quite common 
approach for this purpose is the well-known cross-validation [19]. Further methods on model 
assessment are discussed in [20], [21], [22] where mainly re-sampling methods are considered. A 
different approach is Bayesian model assessment [23], [24], [25] where the model evidence due to the 
model parameter uncertainty is evaluated. 
In our study we consider quality measures based on cross-validation due to the straight-forward 
implementation and clear interpretation of the results as discussed recently in [11], [26], [27], [28]. 
Based on the cross-validation procedure the approximation errors of unknown data points can be 
estimated. In [29] a variance-based quality measure, the Coefficient of Prognosis (CoP) was introduced 
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based on this principle. With help of this measure a model independent assessment and selection is 
possible which was realized in the Metamodel of Optimal Prognosis (MOP) in [29] and extended for 
deep-learning models in [30]. 
In this paper, the robustness and stability of these quality measures by using different cross validation 
procedures are investigated. Based on the prediction residuals, the confidence bounds of the CoP are 
estimated and verified by means of several numerical examples. Additional to the global quality 
measures, a local model independent error estimator is introduced, which can be utilized for local model 
improvement by additional samples. Finally, we recommend an extension of the CoP for non-scalar 
outputs, which is investigated by a further example. 

2 Quality measures for the model assessment 

2.1 Measuring the goodness of fit 
Let us assume a simulation model with a certain number of scalar outputs. Each of these outputs can 
be represented as a black-box function of a given number of inputs 

 𝑦𝑦(𝑥𝑥) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚). (1) 
If these output functions are approximated by a mathematical surrogate model, we obtain an 
approximation of the true function 

 𝑦𝑦�(𝑥𝑥) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚). (2) 
If the approximation model is built or trained based on a given number of support points 𝑛𝑛, we can 
calculate the residuals for each of the support points and estimate different error measures to quantify 
the goodness of fit 

 𝜖𝜖𝑖𝑖 = 𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦�(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 . (3) 
One well known measure is the root mean squared error (RMSE) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 , (4) 

which has the same unit as the output itself and can be interpreted as the standard deviation of the 
approximation error. Another well-known measure is the unitless Coefficient of Determination (CoD), 
which measures the ratio of the explained vs. the original variation of the investigated response. In [31] 
different formulations for CoD are discussed. The two most common formulations are 

 𝐶𝐶𝐶𝐶𝐷𝐷1 = 1 − 𝑆𝑆𝑆𝑆𝐸𝐸
𝑆𝑆𝑆𝑆𝑇𝑇

,  𝐶𝐶𝐶𝐶𝐷𝐷2 = 𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑇𝑇

, (5) 

where the sum of squared errors 𝑅𝑅𝑅𝑅𝐸𝐸 quantifies the unexplained variation, the explained sum of squares 
𝑅𝑅𝑅𝑅𝑅𝑅  quantifies the explained variation and the sum of total squares 𝑅𝑅𝑅𝑅𝑇𝑇 is equivalent to the total variation 
of the response 

 𝑅𝑅𝑅𝑅𝐸𝐸 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ,  𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ (𝑦𝑦�𝑖𝑖 − 𝜇𝜇𝑌𝑌)2𝑛𝑛

𝑖𝑖=1 ,  𝑅𝑅𝑅𝑅𝑇𝑇 = ∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑌𝑌)2𝑛𝑛
𝑖𝑖=1 ,  𝜇𝜇𝑌𝑌 = 1

𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 . (6) 

Only for a linear least-squares model, the two formulations in Equation 5 agree and the following 
equation is valid 

 𝑅𝑅𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑅𝑅𝐸𝐸 + 𝑅𝑅𝑅𝑅𝑅𝑅 ,  0 ≤ 𝐶𝐶𝐶𝐶𝐷𝐷1,2 ≤ 1. (7) 
The application of the CoD for non-linear models is possible but requires special attention as discussed 
in [31]. Figure 1 shows an illustrative example, where a quadratic function is approximated with a linear 
regression model with increasing polynomial order. In this example the synthetic data points contain a 
small amount of random noise. The figure indicates that a high-order polynomial will tend to fit through 
the noisy data points and the corresponding 𝑅𝑅𝑅𝑅𝐸𝐸 decreases. With increasing approximation order, the 
non-linearity of the polynomial model and thus the difference between the two formulations of the CoD 
will increase. The explained sum of squares 𝑅𝑅𝑅𝑅𝑅𝑅 could exceed the total sum of squares 𝑅𝑅𝑅𝑅𝑇𝑇 and the 
second formulation of the CoD could lead to values larger than one. 
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Figure 1. Approximation of noisy data points of a one-dimensional quadratic function with a 

polynomial model with increasing order. 

The first formulation of the CoD could be directly formulated in terms of the squared RMSE as follows 

𝐶𝐶𝐶𝐶𝐷𝐷 = 1 −
𝑅𝑅𝑅𝑅𝐸𝐸
𝑅𝑅𝑅𝑅𝑇𝑇

= 1 −
𝑛𝑛2

𝑅𝑅𝑅𝑅𝑆𝑆 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2. (8) 

This formulation is always smaller or equal one and could be interpreted as the scaled error variance 
of the approximation model. Only if the sum of squared errors 𝑅𝑅𝑅𝑅𝐸𝐸 is larger as the total sum of squares 
𝑅𝑅𝑅𝑅𝑇𝑇, the formulation in Equation 8 could be negative. This is not the case for the most approximation 
models mentioned in the introduction as long a constant baseline is included in the model, which is the 
case in linear regression [2], Moving Least Squares [4] and Ordinary Kriging [18]. 
Since the formulation in Equation 8 is directly related to the RMSE, we use this measure in the following 
paper equivalently to the RSME in order to quantify the deviation between the support point values 
used for the training and the approximation values at these points. Unfortunately, this will not give us 
any information of the prediction quality of the surrogate model for unknown data points. Therefore, we 
extend this measure in the following section. 

2.2 Measuring the prognosis quality 
In order to estimate the prediction error of a mathematical surrogate model, we can split the data set in 
two data sets of same size and use set number one for the training and set number two for the 
estimation of the prediction errors. In a second step this procedure is applied by using data set two for 
the training and data set one for the estimation. This procedure as shown in Figure 2 is called cross-
validation and is explained in more detail in [18]. 

    
Figure 2. Basic cross-validation procedure by splitting the data set in two subsets: Using set one for 

training and set two for prediction (left) and set two for training and set one for prediction (right). 

More generally, we can subdivide the original data set in 𝑞𝑞 subsets of almost equal size, where the 
points in each subset should be selected in that way that they cover the investigated space of the input 
variables almost uniformly. Thus, each of the 𝑛𝑛 support points are mapped to one subset 

𝜁𝜁: {1, … ,𝑛𝑛}  → {1, … , 𝑞𝑞}. (9) 
Once, the 𝑞𝑞 individual cross-validation models have been trained, we use the approximation values to 
evaluate the prediction residuals for each of the available data points 
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𝑦𝑦�𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖) = 𝑓𝑓∼𝜁𝜁(𝑖𝑖)(𝑥𝑥𝑖𝑖), (10) 
where 𝑓𝑓∼ζ(𝑖𝑖)(. ) is the approximation model built by using all cross-validation subsets except the one set 
belonging to the support point 𝑖𝑖. Usually, 5-10 subsets are used within the cross-validation procedure 
to obtain stable estimators [18]. This procedure is called k-fold cross-validation. From this prediction 
the corresponding residuals of the cross-validation prediction errors can be estimated as 

𝜖𝜖𝑖𝑖𝑐𝑐𝑐𝑐 = 𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦�𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐. (11) 
Based on the prediction residuals we can estimate the root mean squared error 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = �1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐�

2𝑛𝑛
𝑖𝑖=1   (12) 

and the Coefficient of Prognosis [29] 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅𝑇𝑇
,  𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐)2.

𝑛𝑛

𝑖𝑖=1

 (13) 

The CoP quantifies the explained variation in the support data points similarly to the CoD, but the 
prediction errors estimated with the cross-validation procedure are considered instead of the pure fitting 
residuals.  

    
Figure 3. Moving Least Squares approximation of noisy data points of a non-linear function for 
different values of the influence radius and corresponding difference between CoD and CoP. 

In Figure 3 an illustrative example of a one-dimensional non-linear function is given to demonstrate the 
differences between these two measures. The CoD and CoP are evaluated using Equation 8 and 13 
with 5 subsets for the cross-validation procedure. As approximation model a Moving Least Squares 
(MLS) approximation [4] with quadratic basis is applied. Further details about the implementation can 
be found in [29]. In Figure 3 the CoD and CoP are shown depending on the influence radius r of the 
MLS approximation. If the radius is chosen very small, the approximation model will tend to fit well true 
the noisy support points. As a result, the CoD is close to one. This case is called over-fitting. With 
increasing influence radius, the approximation model becomes smoother and filters the noise in the 
supports more efficiently. If the radius is chosen to large, the model will tend to the quadratic basis 
function and the approximation becomes inadequate. The CoP will indicate a poor model quality if the 
radius is chosen to small in contrast to the CoD. For a large radius both measures approach to each 
other and both indicate a poor approximation. The radius with the maximum CoP is the optimal choice 
for this example and will result in a suitable approximation model as indicated in Figure 3. This simple 
example shows, that a model evaluation, comparison and possible selection based on the CoP would 
be much more suitable in order to get the best prediction quality for a given support data set. For models 
with high flexibility, it could support the appropriate choice of the model parameters in order to prevent 
over-fitting for noisy data. 
The numerical implementation of the k-fold cross-validation procedure is straight-forward for the most 
classical surrogate models. Our implementation, which is available in the Ansys optiSLang software 
package [32], considers linear regression, Moving Least Squares, Radial Basis Functions and Kriging 
with up to 10.000 data points and requires just a small amount of additional numerical effort compared 
to the model hyper-parameter search. More challenging is the implementation for complex deep 
learning models, since a re-training for each data subset will not always converge to the same global 
functions and might stuck in different local optima. To overcome this issue, we developed a specific, 
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regularized training procedure based on a hybrid approach for the tuning of the optimal network 
architecture and the evaluation of the prognosis measure. Further details on this approach could be 
found in [30], [33]. 
Some mathematical surrogate models provide also closed form solutions for leave-one-out (LOO) 
cross-validation, where each data set belongs just to a single sample. This so-called leave-one-out 
(LOO) cross-validation is very attractive from the computational point of view. However, in our examples 
we will show, that the LOO cross-validation may be too optimistic as an error estimator and the k-fold 
cross-validation gives more reliable results. 

    
Figure 4. Residual plot with the fitting and prediction residuals (left) and sample CoP (right),  

which quantifies the contribution of each sample to the CoP. 

The residuals of the goodness of fit in Equation 3 and of the cross-validation residuals can be displayed 
in a so-called residual plot as shown in Figure 4. If a large deviation of the residuals from the fit and the 
prediction can be observed, we can assume that the applied surrogate model tends to over-fitting. The 
estimated RMSE in Equation 12 can be used to identify possible outliers. Since the RMSE can be 
understood as the standard deviation of the approximation error, we can assume a boundary of about 
±3 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 to check for outliers. In the residual plot in Figure 4, this boundary is indicated as the two 
red lines. In order to get an estimate on how the residuals of an individual support point 𝑥𝑥𝑖𝑖 contribute to 
the CoP, we can further formulate the sample CoP as follows 

𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖 = 1 −
(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐)2

𝑅𝑅𝑅𝑅𝑇𝑇
, (14) 

which is shown additionally in Figure 4. The figure clearly indicates that the sample CoP may help to 
detect outliers more clearly by using a different scaling. The mean value of all individual sample CoPs 
is consequently the global CoP value introduced in Equation 13. 

2.3 Local measures of the prognosis quality 
Based on the individual residuals of each support point we can formulate a continuous function of the 
local prediction error for an arbitrary point in the input space. By using a local averaging scheme similar 
to the Moving Least Squares approximation [4] the locally weighted RMSE and the local CoP can be 
formulated as follows 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐(𝑥𝑥) = �∑ 𝑤𝑤𝑖𝑖(𝑥𝑥)�𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐�
2𝑛𝑛

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1

, (15) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) = 1 −
∑ 𝑤𝑤𝑖𝑖(𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑐𝑐𝑐𝑐)2𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1

⋅
𝑛𝑛
𝑅𝑅𝑅𝑅𝑇𝑇

= 1 −
𝑛𝑛 ⋅ �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐(𝑥𝑥)�2

𝑅𝑅𝑅𝑅𝑇𝑇
, (16) 

where 𝑤𝑤𝑖𝑖(𝑥𝑥) is chosen as an exponential, isotropic weighting function, which is scaled with respect to 
the number of necessary averaging points. In Figure 5 the estimated local prediction errors are shown 
for the residuals from Figure 4. The figure indicates that in the region of the identified outlier the 
approximation quality is worst. 
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Figure 5. Estimated local root mean squared error (left) and the local Coefficient of Prognosis (right) in 

a subspace plot of a 5D input space. 

The presented local prediction errors can be easily utilized in an adaption scheme such as the expected 
improvement criterion according to [34]. The advantage of this error estimator is its independence w.r.t. 
the approximation model type. Thus, it can be applied for simple polynomial models in the same manner 
as for more sophisticated deep learning networks. This estimator has been applied in the Adaptive 
Metamodel of Optimal Prognosis (AMOP) [32] in the Ansys optiSLang software package. With help of 
the local RMSE the prediction uncertainty of an investigated surrogate model can be interpreted as a 
normally distributed random process, where the mean corresponds to the model approximation itself 
and the standard deviation to the estimated local RMSE. 

2.4 Estimation of confidence bounds using bootstrapping 
Once the cross-validation residuals and the prediction quality estimators have been evaluated, one may 
need further information on the confidence bounds of these estimators. For this purpose, we apply the 
bootstrapping method introduced in [35]. In this method the statistical properties of an estimator are 
obtained by sampling from an approximate distribution which can be the empirical distribution of the 
observed data or a parametrized form of this distribution. In our study we use the most common 
approach, the non-parametric bootstrapping, where the sampling is done directly from the empirical 
distribution of the original observations. This method assumes independent and identically distributed 
observations and constructs a number of re-samples from the original samples. In [36] this procedure 
is discussed in detail for the estimation of statistical moments of material properties. 
In our study we assume the cross-validation residuals of the approximation function in Equation 11 as 
independent observations of an unknown random number. From this original set of observations 
ϵ1𝑐𝑐𝑐𝑐, ϵ2𝑐𝑐𝑐𝑐, … , ϵ𝑛𝑛𝑐𝑐𝑐𝑐 a bootstrap sample set 𝐵𝐵𝑗𝑗 = ϵ1,𝑗𝑗

∗ , ϵ2,𝑗𝑗
∗ , … , ϵ𝑛𝑛,𝑗𝑗

∗  with 𝑛𝑛 samples is selected by random 
sampling with replacement from the observation data set as illustrated in Figure 6. 
In this set each observation 𝜖𝜖𝑖𝑖𝑐𝑐𝑐𝑐 may appear once, more than once or not at all. This procedure is 
repeated with a large number of repetitions and the presented model quality measures are estimated 
for each bootstrap sample set 𝑩𝑩𝒋𝒋 as follows 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑗𝑗 = �
1
𝑛𝑛��𝜖𝜖𝑖𝑖,𝑗𝑗∗ �

2
𝑛𝑛

𝑖𝑖=1

,  𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝑗𝑗 = 1 −
∑ �𝜖𝜖𝑖𝑖,𝑗𝑗∗ �

2𝑛𝑛
𝑖𝑖=1

𝑅𝑅𝑅𝑅𝑇𝑇
. (17) 

From the individual results of each bootstrap set 𝑩𝑩𝒋𝒋, the statistical properties of the RMSE and CoP 
estimates can be evaluated. 
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Figure 6. Principle of non-parametric bootstrap method: generation of a bootstrap sample set from the 

original residual set by random choice with replacement. 

In Figure 7 the 100 cross-validation residuals of the previous example plots are shown. The anthill plot 
indicates an almost independent relation between the data values and the residuals. However, the 
histogram is non-symmetric and indicates a skewed distribution. For these residuals the bootstrap 
resampling is applied using 105 repetitions and the statistical measures are evaluated for each of the 
bootstrap samples. In Figure 7 the histograms of the corresponding RMSE and CoP are shown 
including the 99% confidence intervals, which can be directly estimated from the bootstrap samples. 
The figure indicates an almost symmetric distribution of the RMSE, which would fit to a normal 
distribution very well. The distribution of the CoP is non-symmetric and skewed, which means that the 
mean value and the standard deviation might be not sufficient to characterize the confidence interval. 
Therefore, we calculate the confidence intervals of each quality directly from the bootstrap samples 
without assuming any distribution. 
The benefit in bootstrapping the residuals directly instead of training new surrogate models for each 
bootstrap set is clearly the reduction of the numerical effort. Once the cross-validation residuals are 
obtained for a given support point set, the bootstrapping and the evaluation of the CoP distribution can 
be performed very cheap. However, the estimator will not cover the case, that the support points do not 
have a suitable distribution. Nevertheless, the confidence estimates from this procedure are quite 
helpful to assess the quality estimators as shown in the numerical examples. 

    

    
Figure 7. Cross-validation residuals of 100 support points: distribution and histogram (top) and 

bootstrapped RMSE and CoP (bottom) with deterministic estimates (green) and 99% confidence 
interval (red). 
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2.5 Extension to non-scalar outputs 
The non-scalar outputs of a simulation model can be described as a function of the vector of input 
parameters x and a discretization vector t 

𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡). (18) 
This discretization could be defined by a specific time step of a time-series output, a spatial coordinate 
of the stress or strain field outputs of a finite element model or a combination of spatial and time 
discretization. Let us assume, that the discretization vector maps a spatial output object to a single 
scalar output as shown in Figure 8 for a one-dimensional time-series output. 

 
Figure 8. Samples of a time-series and indicated mean and sum of total squares  

at a certain discretization point ti. 
If the mapping of the discretization is unique for every sample, we can formulate the residuals of the 
simulation and the approximation model as follows 

𝜖𝜖𝑗𝑗(𝑡𝑡𝑖𝑖) = 𝑦𝑦�𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑖𝑖� − 𝑦𝑦��𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑖𝑖� = 𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖) − 𝑦𝑦�𝑗𝑗(𝑡𝑡𝑖𝑖). (19) 
With this formulation we can introduce the spatial sum of errors and sum of squares accordingly to the 
scalar outputs 

𝑅𝑅𝑅𝑅𝐸𝐸(𝑡𝑡𝑖𝑖) = ��𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖) − 𝑦𝑦�𝑗𝑗(𝑡𝑡𝑖𝑖)�
2

𝑛𝑛

𝑗𝑗=1

,  𝑅𝑅𝑅𝑅𝑇𝑇(𝑡𝑡𝑖𝑖) = ��𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖) − 𝜇𝜇𝑌𝑌(𝑡𝑡𝑖𝑖)�
2

𝑛𝑛

𝑗𝑗=1

,  𝜇𝜇𝑌𝑌(𝑡𝑡𝑖𝑖) =
1
𝑛𝑛�𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖)

𝑛𝑛

𝑗𝑗=1

.  (20) 

The discretized formulations for 𝑅𝑅𝑅𝑅𝐸𝐸 and 𝑅𝑅𝑅𝑅𝑇𝑇 could be used to calculate the CoD accordingly to Equation 
8, which would normalize the output residuals at each discretization point individually 

𝐶𝐶𝐶𝐶𝐷𝐷(𝑡𝑡𝑖𝑖) = 1 −
𝑅𝑅𝑅𝑅𝐸𝐸(𝑡𝑡𝑖𝑖)
𝑅𝑅𝑅𝑅𝑇𝑇(𝑡𝑡𝑖𝑖)

. (21) 

If a stress field or a time-series has small variations in a certain region this normalization might be 
difficult to interpret since it might indicate low CoD values for similar 𝑅𝑅𝑅𝑅𝐸𝐸 estimates just due to the 
different normalization with 𝑅𝑅𝑅𝑅𝑇𝑇(𝑡𝑡𝑖𝑖). If the spatial or time-series output is assumed to be a stationary 
random process, the stationary CoD might be a more suitable measure for this type of applications 

𝐶𝐶𝐶𝐶𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖) = 1 −
𝑅𝑅𝑅𝑅𝐸𝐸(𝑡𝑡𝑖𝑖)
𝑅𝑅𝑅𝑅𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

, (22) 

where the stationary sum of squares could be assumed as the stationary variance of the whole non-
scalar output considering nd discretization points 

𝑅𝑅𝑅𝑅𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
𝑛𝑛𝑑𝑑

���𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖) − 𝜇𝜇𝑌𝑌(𝑡𝑡𝑖𝑖)�
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛𝑑𝑑

𝑖𝑖=1

=
1
𝑛𝑛𝑑𝑑

�𝑅𝑅𝑅𝑅𝑇𝑇(𝑡𝑡𝑖𝑖).
𝑛𝑛𝑑𝑑

𝑖𝑖=1

 (23) 

Similar to the stationary CoD, we can define the stationary CoP as follows 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖) = 1 −
𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖)
𝑅𝑅𝑅𝑅𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,  𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖) = ��𝑦𝑦𝑗𝑗(𝑡𝑡𝑖𝑖) − 𝑦𝑦�𝑗𝑗𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖)�
2

𝑛𝑛

𝑗𝑗=1

. (24) 
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The cross-validation procedure and the calculation of the residuals is straight-forward from the 
mathematical viewpoint, similar as for scalar outputs. However, the residuals require a unique mapping 
to a reference discretization. Nevertheless, the analysis of finite element meshes with high resolution 
requires an efficient implementation of the cross-validation procedure and especially the sensitivity 
estimation. In [37], [38], [39], [40] further details on different approximation models and discretization 
types for non-scalar outputs are discussed. 

3 Benchmark results and applications 

3.1 Analytical benchmark function 
In a first example, we investigate an analytical benchmark function with 5 inputs  

𝑦𝑦(𝑥𝑥) = 0.5 ⋅ 𝑥𝑥1 + 𝑥𝑥2 + 0.5 ⋅ 𝑥𝑥1𝑥𝑥2 + 5.0 ⋅ 𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3) + 0.2 ⋅ 𝑥𝑥4 + 0.1 ⋅ 𝑥𝑥5,  −𝜋𝜋 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝜋𝜋, (25) 
which is shown in Figure 9 in different two-dimensional subspaces of the inputs while keeping the 
remaining inputs constant at the mean values. This benchmark function was introduced in [29] and 
consists of additive linear and non-linear terms and one coupling term. Furthermore, the inputs 𝑥𝑥4 and 
𝑥𝑥5 have minor importance. We investigate this example by generating 50 support points within the input 
bounds by using an improved Latin-Hypercube Sampling (LHS) according to [41]. An isotropic Kriging 
approximation model according to [18] is trained by using these support points and a k-fold and LOO 
cross-validation is performed to estimate the prediction errors. Unimportant inputs are removed 
automatically from the approximation model using the Metamodel of Optimal Prognosis approach [29]. 
500 additional test samples are generated by an independent LHS and are evaluated with the 
benchmark function. These samples are used to compare the estimated prediction errors from the 
cross-validation procedure with the errors in unknown data. For this purpose, the prediction sum of 
squares 𝑅𝑅𝑅𝑅𝐸𝐸 is evaluated for the cross-validation residuals and for the additional test data according to 
Equation 13. 

             
Figure 9. Analytical 5D benchmark function plotted in the 2D subspaces spanned by x1-x2 and x2-x3. 

In order to quantify the statistical scatter of the prediction error estimates, we generate 50 independent 
data sets for the support points and perform the model training and error estimation and compare these 
estimates with the prediction error of a fixed test data set. Since the 𝑅𝑅𝑅𝑅𝑇𝑇 itself varies for each support 
point set, we compare not directly the estimated CoP from the cross-validation with the CoD of the test 
data. Instead, we scale the 𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐 from the cross-validation with the 𝑅𝑅𝑅𝑅𝑇𝑇 of the test data as follows 

𝛥𝛥𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐 =

1
𝑛𝑛 𝑅𝑅𝑅𝑅𝐸𝐸

𝑐𝑐𝑐𝑐 − 1
𝑛𝑛𝑠𝑠
𝑅𝑅𝑅𝑅𝐸𝐸𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠

1
𝑛𝑛𝑠𝑠
𝑅𝑅𝑅𝑅𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠

, (26) 

where the normalization with the number of supports 𝑛𝑛 and the number of test data points 𝑛𝑛𝑠𝑠 is 
necessary due to the different number of samples in both sets. In Figure 10 the obtained ∆𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐 are 
shown for the 50 investigated runs by using LOO as well as k-fold-cross-validation in the prediction 
quality estimation. The figure indicates, that in case of LOO the number of runs, where the 𝑅𝑅𝑅𝑅𝐸𝐸 is over-
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estimated, is similar as the number of cases where the 𝑅𝑅𝑅𝑅𝐸𝐸 is under-estimated. If the k-fold-cross-
validation is used, the estimated 𝑅𝑅𝑅𝑅𝐸𝐸 is mostly larger as verified by the test data, which is indicated by 
∆𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐 >  0. This means that the CoP estimate is in the most cases more conservative and does not 
over-estimate the prediction quality of the investigated surrogate model. If the number of support points 
is increased, the deviation between the LOO and k-fold-cross-validation quality estimates reduces. 
Additionally, we investigate the confidence of the estimated CoP compared to the corresponding CoD 
of the test data. The confidence interval of the CoP is estimated directly from the k-fold cross validation 
residuals for each run using the bootstrap approach with 105 repetitions. In Figure 11 the CoP estimates 
with 99% confidence bounds are shown for the 50 investigated runs. The figure indicates that the 
confidence interval of the CoP covers the verified CoD in almost all cases. If we look deeper into the 
results, we can observe, that for several runs the CoP estimate is similar, but the confidence bounds 
differ significantly. This is the case for the sorted run numbers 34 and 35. In Figure 12 the residual plots 
and the histogram of the bootstrapped CoP of both cases are shown. The figure indicates, that for run 
34 with the larger confidence interval, one significant outlier can be observed while the remaining 
residuals are smaller. In run number 35 the residuals indicate no significant outlier but have larger 
variation as in run number 34. This means, that in case of possible outliers the confidence interval of 
the CoP should be larger, and a narrow estimate of the CoP is not possible. 

      
Figure 10. Statistical evaluation of the prediction errors of the analytical test function by using 50 

support points and 500 test points with k-fold-cross-validation (left) and LOO-cross-validation (right). 

 
Figure 11. CoP estimates and confidence bounds of the analytical test function by using k-fold cross-

validation compared to the CoD of the test data for 50 support points. 

3.2 Noisy benchmark function 
In the second example we extend the analytical function with additional linear, non-linear and noise 
terms. The function for 20 inputs reads 

𝑦𝑦(𝑥𝑥) = 0.5 ⋅ 𝑥𝑥1 + 𝑥𝑥2 + 0.5 ⋅ 𝑥𝑥1𝑥𝑥2 + 5.0 ⋅ 𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥3) + 0.5 ⋅ 𝑥𝑥4 + 0.5 ⋅ 𝑥𝑥42 + 0.1 ⋅ 𝑥𝑥5 

+� 0.01
20

𝑖𝑖=6

⋅ 𝑥𝑥𝑖𝑖 + 0.5 ⋅ 𝒩𝒩(0,1),  −𝜋𝜋 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝜋𝜋, 
(27) 

where 𝒩𝒩(0,1) is a standard normal noise term.  
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Figure 12. Residual plots and bootstrapped CoP's of the analytical test function of sorted run number 

34 (left) and run number 35 (right) by using 50 support points. 

We generate 100 support points and 500 additional test samples by Latin-Hypercube Sampling (LHS) 
and apply an isotropic Kriging approximation model. The scatter of the statistical measures is analyzed 
again by evaluating 50 runs with k-fold-cross-validation. In Figure 13 the estimated confidence intervals 
are compared to the CoD of the additional test data. As in the previous example, the estimated 
confidence bounds of the CoP and the verified CoD agree very well. 

 
Figure 13. CoP estimates and confidence bounds of the noisy test function by using k-fold-cross-

validation compared to the CoD of the test data for 100 support points. 

3.3 Front crash example 
In the third example we investigate the presented error measures on a highly non-linear application, 
where the intrusions and pulses of a truck impact example are analyzed with the LS-Dyna finite element 
solver as shown in Figure 14. The pulses are acceleration related quantities computed over two-time-
intervals of the crash event. 22 input variables have been considered in the analysis which belong to 
the metal sheet thicknesses and the material properties of specific parts of the car body. Further details 
on this example can be found in [42]. For this example, different data sets of 100, 200 and 400 Latin 
Hypercube samples have been used for the model training and a single test data set of 1200 samples 
for the validation of the estimated prediction errors. 
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Figure 14. Investigated front crash example according to [42] considering 22 varying inputs of specific 

parts of the car body in a LS-Dyna simulation model. 

Table 1. Computed quality estimates for the front crash example with 22 inputs and 6 investigated 
outputs by using k-fold cross validation and residual bootstrapping 

Output 
No. 

supports Selected Model 
No. selected 

inputs CoP 
99%  

conf. interval 
CoD  

test data 
 100 Linear Polynomial 9 0.747 0.643 - 0.830 0.759 

N1_disp 200 Anisotropic Kriging 14 0.803 0.735 - 0.856 0.809 
 400 Anisotropic Kriging 18 0.835 0.793 - 0.867 0.836 
 100 Linear Polynomial 9 0.778 0.676 - 0.856 0.787 

N2_disp 200 Anisotropic Kriging 14 0.827 0.762 - 0.876 0.836 
 400 Anisotropic Kriging 15 0.857 0.823 - 0.885 0.853 
 100 Anisotropic Kriging 11 0.990 0.986 - 0.993 0.989 

Stage1Pulse 200 Anisotropic Kriging 13 0.992 0.989 - 0.994 0.994 
 400 Anisotropic Kriging 13 0.994 0.992 - 0.995 0.994 
 100 Linear Polynomial 20 0.942 0.922 - 0.961 0.908 

Stage2Pulse 200 Anisotropic Kriging 18 0.956 0.946 - 0.965 0.932 
 400 Anisotropic Kriging 19 0.967 0.961 - 0.973 0.954 
 100 Linear Polynomial 9 1.000 1.000 - 1.000 1.000 

total_mass 200 Linear Polynomial 9 1.000 1.000 - 1.000 1.000 
 400 Linear Polynomial 9 1.000 1.000 - 1.000 1.000 

Head injury 100 Anisotropic Kriging 2 0.062 0.000 - 0.752 0.000 
criterion (HIC) 200 Anisotropic Kriging 19 0.365 0.000 - 0.686 0.000 

 400 Anisotropic Kriging 21 0.318 0.000 - 0.677 0.000 
 
Again, we use the Metamodel of Optimal Prognosis [29] to select the most suitable approximation model 
for each response automatically. As approximation models we consider polynomials and Moving Least 
Squares, each with linear and quadratic basis, as well as isotropic and anisotropic Kriging. Additional 
to the best approximation model, the optimal subspace of important inputs is detected by using the 
maximum Coefficient of Prognosis as selection criterion. 
In Table 1 the results for the investigated six responses are given. The table indicates, that with 
increasing number of support points, the prediction quality estimated with the CoP and verified with the 
test data set increases for almost all outputs. Furthermore, the estimated confidence interval of the CoP 
covers the verified test CoD very well. The table further indicates, that with increasing number of 
supports the number of selected important inputs increases, which is a typical phenomenon in machine 
learning. For the HIC output, the CoP and its confidence interval indicate a very low prediction quality, 
which might be caused by numerical noise in the output or a high-dimensional non-linear relation 
between the inputs and the HIC value. 
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In Figure 15 the residuals and the bootstrapped CoP's are shown exemplarily for the N1_disp 
displacement response obtained for 400 support points. For this output a clear improvement of the 
prediction quality can be observed with increasing number of support points, which is indicated by a 
narrower confidence interval. In the residual plots no significant outlier or systematic approximation 
errors could be recognized. This is not the case for the HIC value residuals shown in Figure 16. Here a 
clear systematic approximation error could be detected, which confirms the estimated poor 
approximation quality. The calculated confidence intervals cover almost the whole domain of possible 
CoP values. 

     
Figure 15. Residual plots (left) and bootstrapped CoP's (right) of the output N1_disp from the front 

crash example by using 400 support points. 

      
Figure 16. Residual plots (left) and bootstrapped CoP's (right) of the HIC value by using 400 supports. 

3.4 Cut-In scenario example 
In the following example, the simulation data of a Cut-In scenario of an autonomous vehicle are 
analyzed. Further details of the simulation analysis can be found in [43]. In this example 10 input 
parameters as ego and cut-in vehicle speeds, lead vehicle distance and breaking deceleration are 
considered. In the simulation the typical key performance indicators (KPIs) as critical time headway 
(THW), time to collision (TTC), collision speed and many others have been calculated. From these 
outputs a combined failure criterion was derived for each simulation run. 
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Figure 17. Simulated Cut-Scenario of an autonomous vehicle. 

For the analysis of the machine learning models, different data sets of 280, 560, 1120 and 1866 support 
points have been used for the training and 5600 data points are considered as verification data. Similar 
as in the previous example, different approximation models have been considered in the MOP 
competition and the most important inputs have been detected automatically. In Table 2 the estimated 
CoPs for the training data and the CoDs of the verification data set are given for four selected outputs 
including the confidence interval from the bootstrapped residuals.  
The table shows, that for each investigated output, the estimated CoP increases with increasing number 
of training points. Furthermore, the CoD of the verification agrees very well with the CoP estimates and 
the corresponding confidence bounds. 

Table 2. Computed quality estimates for the Cut-In example with 10 inputs and 4 investigated outputs 
by using k-fold cross validation and residual bootstrapping. 

Output 
No. 

supports Selected Model 
No. selected 

inputs CoP 
99%  

conf. interval 
CoD  

test data 
Time 280 Anisotropic Kriging 7 0.666 0.568 - 0.750 0.745 

Headway 560 Anisotropic Kriging 7 0.722 0.659 - 0.776  0.771 
(THW) 1120 Anisotropic Kriging 7 0.794 0.756 - 0.830 0.804 

 1866 Anisotropic Kriging 8 0.824 0.795 - 0.850 0.841 
Time to 280 Anisotropic Kriging 10 0.417 0.112 - 0.661  0.244 
collision 560 Anisotropic Kriging 8 0.459 0.281 - 0.613 0.490 
(TTC) 1120 Anisotropic Kriging 10 0.506 0.385 - 0.613 0.549 

 1866 Anisotropic Kriging 9 0.554 0.464 - 0.634 0.600 
 280 Anisotropic Kriging 5 0.804 0.735 - 0.863 0.751 

Ego max  560 Anisotropic Kriging 8 0.792 0.721 - 0.845 0.785 
speed 1120 Anisotropic Kriging 9 0.827 0.791 - 0.858 0.824 

 1866 Anisotropic Kriging 8 0.843 0.812 - 0.869 0.837 
 280 Anisotropic Kriging 7 0.704 0.583 - 0.800 0.721 

Criticality 560 Anisotropic Kriging 8 0.713 0.636 - 0.782 0.758 
 1120 Anisotropic Kriging 8 0.773 0.722 - 0.819 0.797 
 1866 Anisotropic Kriging 8 0.808 0.772 - 0.840 0.830 

 
In Figure 18 the approximation model for the time-headway output is shown exemplarily for 280 and 
1866 training points. In the first case the model already represents the global behavior, but local 
nonlinearities are filtered. For 1866 training points these local relations can be represented much more 
accurate. In Figure 19 the corresponding residual plots and the histograms of the bootstrapped CoP of 
both cases are shown. The figure indicates that even with 1866 training points a perfect approximation 
of the simulated time headway is not possible. However, the estimated CoP was proven to be an 
accurate and reliable measure for the model prediction quality. 

 

 
 

Ego vehicle 

Cut in vehicle 
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Figure 18. Approximation model of the time headway (THW) for 280 training points (left) and 1866 

training points (right) in the subspace of the two most important inputs of the Cut-In scenario example. 

  

   
Figure 19. Residual plots (top) and bootstrapped CoP's (bottom) of the time headway output of the 

Cut-In scenario example. 

3.5 Wedge splitting example with non-scalar outputs 
In the final example, the CoP estimates are investigated for non-scalar outputs. We consider the load-
displacement curve of a wedge splitting test as one-dimensional output. The simulation model shown 
in Figure 20 considers an elastic base material and a predefined crack with bi-linear softening law. The 
structure is discretized by 2D finite elements, and the softening curve is obtained by a displacement-
controlled simulation. The displacements are measured as the relative displacements between the load 
application points. Further details on the simulation model can be found in [44]. Six material parameters 
are varied to generate the samples: the Young’s modulus, the Poisson’s ratio, the tensile strength, the 
Mode-I fracture energy and two shape parameters of the bi-linear softening law. 

280 points 
CoP: 66.6 % 

1866 points 
CoP: 82.4 % 
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Figure 20. Wedge splitting test example: finite element model (left) and simulated 200 Latin 

Hybercube samples of the load-displacement curve (right). 

The samples of the load-displacement curves are discretized at 49 equidistant displacement points. As 
approximation model we utilize the Deep Gaussian Covariance Network [39], where a one-dimensional 
function is represented as a correlated Gaussian process model. A further application of this model for 
time-series approximation can be found in [40]. 

   
Figure 21. Wedge splitting test example: RMSE of the model fit from the cross-validation residuals 

and from the test samples (left) and the corresponding stationary CoD and CoP values (right) 
The estimated RMSE errors of the 200 training samples are shown for each displacement value in 
Figure 21 together with the cross-validation results and the RMSE estimates from an independent test 
data set with 1000 Latin Hypercube samples. The figure indicates, that the cross-validation estimates 
agree very well with the test samples. Since the standard deviation of the response decreases 
significantly with increasing displacements as shown in Figure 20, we consider the stationary CoD and 
CoP according to Equation 22 and 24. In Figure 21 both measures are shown together with the 
stationary CoD of the test data. As expected, all three quantities will approach to one for increasing 
displacements since the RMSE estimates decrease. If the ordinary CoD and CoP would be used instead 
of the stationary measures, the predicted approximation quality would decrease for larger 
displacements due to the reduced variation of the displacements in the samples. 

4 Conclusions 
In this paper, statistical measures for the assessment of the prediction quality of machine learning 
models are investigated regarding their accuracy and robustness. Based on a cross-validation 
approach, the Coefficient of Prognosis was introduced as a model independent quality measure. 
However, the implementation of the cross-validation procedure is very important for a stable estimation 
of the prediction quality as shown in the numerical examples. From these findings, we would prefer the 
k-fold cross-validation towards the Leave-one-out approach since it gives more conservative estimates 
especially for a limited number of training data points. 
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Statistical confidence bounds of these global quality measures have been derived by using the 
bootstrap approach, whereas the resampling was evaluated directly on the cross-validation residuals. 
Therefore, this procedure can be applied without any additional model training. By means of several 
numerical examples, the value of the estimated confidence bounds could be demonstrated. This 
additional information helps to decide, how reliable the quality estimators are, if further data points are 
necessary, or if the prediction quality is affected by possible outliers. 
Additionally, to the global quality measures, we introduced the local Root Mean Squared Error (RMSE) 
and the local CoP as local quality measures, which can be evaluated for each approximation point. 
They offer model independent error estimators of the local model prediction, which could be very 
valuable for Digital Twins applications. 
The extension to non-scalar outputs requires the unique mapping of the discretization to a reference 
mesh, where the prediction error of each discretization point could be evaluated similarly to a scalar 
output. In order to obtain a unitless measure as the CoD and CoP, a normalization could be realized 
using the individual variation of each discretization point or assuming a stationary output variation. Both 
procedures require an efficient implementation as realized in Statistics on Structures [37], [45] as part 
of the Ansys optiSLang software package [32]. 
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