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Abstract 

Design optimization of real-world industrial products is usually a challenging high-dimensional task with 
several multi-modal objectives. Therefore, the solution has to be found by global optimization algorithms 
which require fast surrogate models to realize a large number of design evaluations. However, 
approximating the original optimization criteria by surrogates may mislead the optimization by offering 
solutions in the entire design domain, even if designs are not viable in reality. Therefore, a classification 
model should be used as additional optimization constraint to guide the optimizer to viable results. 
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1 Introduction 
Aero engines (Figure 1) are complex technical systems with generally non-linear relations between 
many design parameters 𝒙 = [𝑥1, … , 𝑥𝐷]𝑇, 𝐷 ≫ 1, and some design criteria 𝒚(𝒙), usually requiring costly 
numerical analyses in the aero engine design process. Therefore, optimization of aero engines w.r.t. 
criteria like specific fuel consumption (SFC) and mass is rather challenging. 

 
Figure 1. Cutaway of an aero engine and a small selection of potential design parameters. 
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Fortunately, the challenges associated with optimization of complex and costly systems have been the 
subject of active research. The starting point is usually the substitution of the original costly-to-evaluate 
process by fast-to-evaluate surrogate models to perform surrogate-assisted optimization (SAO). These 
surrogates are trained with a relatively small set of originally evaluated support points to approximate 
input-output relations. The ongoing development using a plurality of different techniques is repeatedly 
summarized (see e.g. [1], [2]). 
Using surrogates enables a variety of different approaches for optimization like evolutionary algorithms 
(EA), which usually need numerous evaluations to search for globally optimal designs. To reduce the 
amount of costly training samples, SAO is typically combined with adaptive re-sampling techniques, 
which sequentially evaluates promising new samples (e.g. [3]). Rather simple re-sampling methods are 
using the suggested points of the optimizer, while others assess suggested candidate designs w.r.t. 
dominance and convergence before costly re-evaluation [4]. Kriging-based SAO like Efficient Global 
Optimization (EGO) [5] deliver predictions of criterion values (exploitation) as well as uncertainties of 
these predictions which are utilized to determine promising new candidates (exploration). High 
dimensionality of the design space generally adversely affects the SAO process (curse of 
dimensionality). Therefore, different techniques to reduce the dimensionality have been investigated in 
this context (e.g. [6]-[8]). Additionally to optimization criteria, surrogates may also be used to identify 
boundaries of the feasible design space by approximating feasibility constraints (e.g. [9]). 
Despite the numerous developments and investigations, an important aspect, which has not yet been 
addressed sufficiently in the literature, is the viability of designs when using SAO. Here, the term viability 
describes whether a certain design can (viable design) or cannot (non-viable design) be evaluated by 
the original process (physical experiment or numerical simulation). Within the context of optimization, 
viable designs will return values for optimization criteria, whereas non-viable designs cause the 
experiment or simulation to fail. It should be noted that the term viability is fundamentally different from 
the term feasibility, which only means that all known design constraints are satisfied and presumes 
computability (viability) of these functions.  
Using SAO faces two challenges when dealing with viability: (i) since a trained surrogate model typically 
provides solutions for every design, even if it is not viable in reality, a usual SAO without incorporating 
an additional information about the viability may be misled to pseudo-optimal, non-viable designs; (ii) 
adaptive re-sampling techniques can be adversely affected or even stall if new designs are proposed 
regardless of their viability and cannot be evaluated to update the surrogate. Forrester et al. [10] treat 
non-viable designs as missing data and use data imputation in combination with Kriging-based 
surrogates to guide new samples towards viable designs. An additional Kriging-based surrogate for the 
EGO framework approximating the possibility of a design to be viable was investigated by He et al. for 
single- [11] and variable-fidelity [12] simulations. Sacher et al. [13] use a classification surrogate model 
to estimate viability which is incorporated as an inequality constraint into a single objective EGO 
framework. However, Kriging-based SAO has disadvantages when dealing with very high design 
dimensions, which is why approaches that are more general may be required. 
This paper takes up some of the previously described concepts like the classification of viability and, 
compared to a usual SAO, its incorporation as an additional constraint into the optimization process. In 
order to focus this investigation to the viability issue, no other constraints are applied in the optimization 
process on purpose. Unlike other papers, it avoids Kriging and uses a regression-based bi-criterion 
optimization concept coupling an EA with a classification surrogate to address the viability issue without 
data imputation. The approach is applied to an industrial preliminary aero engine design process, which 
offers several hundred of design parameters. This enormous design degree of freedom could be limited 
to 117 design parameters by experience, which, however, is still a challenging amount of parameters. 
The original process combines rather basic numerical simulations and other calculations to combine 
several engine components to a simple holistic engine model which on average needs about 10 minutes 
to evaluate a design – or to fail. The intention of this paper is to demonstrate the workability of the 
introduced framework and methods for a real-world high-dimensional application. Here, the aero engine 
design is optimized w.r.t. the criteria 𝒚 = [𝑆𝐹𝐶, 𝑚]𝑇, where 𝑆𝐹𝐶 is the specific fuel consumption and 𝑚 
is the engine mass. The structure of the paper is as follows: Section 2 describes the general procedure 
and terms of using surrogate models for regression and classification. Section 3 finds surrogates for 
both optimization criteria (SFC, mass) and the only constraint (viability) using all 117 design parameters. 
Section 4 reduces the dimensionality based on global sensitivity analysis. Finally, Section 5 carries out 
a model-based design optimization using the reduced set of parameters and incorporating the additional 
information about viability as a constraint.  
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2 Substituting the original analysis by surrogate models 
Fast-to-evaluate surrogate models are useful for approximating both continuous relations (e.g. 
regression) and categorical outcomes (classification) of expensive physical experiments or numerical 
simulations. This section will introduce the basic steps and terms. Two different types of surrogate 
models are used in this paper, which are taken from the Python library Scikit-learn [14]: (i) multi-layer 
perceptron and (ii) Extra-trees. 

2.1 Design of Experiments and Scaling 
The substitution usually starts with a design of experiments (DoE) for the design parameters 𝒙 and their 
evaluation 𝒚(𝒙) using the original costly analysis process, which results in samples 

(𝒙(𝑛), 𝒚(𝑛)) where 𝒚(𝑛) = 𝒚(𝒙(𝑛)), 𝑛 = 1 … 𝑁. (1) 
To address the viability of a design 𝒙, an additional (binary) criterion 𝑣(𝒙) is introduced as 

(𝒙(𝑛), 𝑣(𝑛)) where 𝑣(𝑛) = 𝑣(𝒙(𝑛)) ∈ {0,1} , 𝑛 = 1 … 𝑁, (2) 
where 𝑣(𝑛) = 1 represents a viable and 𝑣(𝑛) = 0 a non-viable design. To create a space-filling DoE, 
Latin Hypercube (LHC) sampling [15] is applied, generating two separate data sets, one for training 
with 𝑁𝑡𝑟𝑎𝑖𝑛 = 2000 including the baseline design, and one for testing with 𝑁𝑡𝑒𝑠𝑡 = 1499 sample points. 
For both data sets, about 53% of the designs 𝒙(𝑛) ∈ 𝒳 belong to the viable subset 𝒳𝑣 ⊆ 𝒳, the 
remaining to its non-viable complement 𝒳̅𝑣 = 𝒳\𝒳𝑣. 
To improve training, it is advisable to normalize the input parameters and to standardize the optimization 
criteria. Given the minimum 𝑥̌𝑑 = 𝑚𝑖𝑛𝑛(𝑥𝑑

(𝑛)
) and maximum 𝑥̂𝑑 = 𝑚𝑎𝑥𝑛(𝑥𝑑

(𝑛)
) of the samples within the 

training DoE of a design parameter 𝑥𝑑, 𝑑 ∈ {1,2, … , D}, the min-max normalization of each sample from 
both the training- and test-set is 

𝑥𝑑 ≔ (𝑥𝑑 − 𝑥𝑑) (𝑥𝑑 − 𝑥𝑑)⁄ , 𝑑 = 1, … , 𝐷. (3) 
Given the arithmetic mean 𝑦̅ and standard deviation 𝑠 of the evaluated samples within the training DoE, 
the standardization of each evaluated sample from both the training- and test-set is 

𝑦 ≔ (𝑦 − 𝑦̅) 𝑠⁄ . (4) 
The normalized training-DoE as well as its evaluated and standardized (viable) outcomes are 
summarized in Figure 2a, and Figure 2b, respectively. Figure 2c shows the proportions of viable (True) 
and non-viable (False) samples from the training- and test-set. 

2.2 Regression analysis 
To substitute functional relations between inputs 𝒙 and continuous outcomes 𝑦(𝒙) of a real experiment 
or simulation with an approximation error 𝜀, regression analysis uses the model 

𝑦̂(𝒙; 𝜽, 𝜷) = 𝑦(𝒙) + 𝜀 (5) 
where 𝜽 and 𝜷 are some model specific parameters; 𝜽 are the parameters to be ‘learned’ during 
training, whereas 𝜷 are hyper-parameters to be adjusted in a detached procedure called model 
selection [16]. To select proper hyper-parameters, cross-validation will be used and explained later. 

  
Figure 2. DoE for aero engine design: a) all designs as 2D-projection in normalized design space 

(yellow: LHC, magenta: baseline) and b) viable designs in standardized criterion space as well as c) 
proportions of viable designs in training- and test-samples. 
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The term training expresses the process that finds a priori unknown values 𝜽 by minimizing a loss-
function, e.g. the mean squared error (MSE) 

𝐿𝑟𝑒𝑔 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ (𝑦𝑡𝑟𝑎𝑖𝑛

(𝑛)
− 𝑦̂𝑡𝑟𝑎𝑖𝑛

(𝑛)
)

2𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1   (6) 

where 𝑦𝑡𝑟𝑎𝑖𝑛
(𝑛)

= 𝑦(𝒙(𝑛) ∈ 𝒳𝑡𝑟𝑎𝑖𝑛) and 𝑦̂𝑡𝑟𝑎𝑖𝑛
(𝑛)

= 𝑦̂(𝒙(𝑛) ∈ 𝒳𝑡𝑟𝑎𝑖𝑛) are the analysed outcomes (1) and 
predicted outcomes (5) of the training set, respectively. 
To assess the model quality during the model selection process as well as to test a finally selected 
surrogate model, the coefficient of determination 

𝑅2 = 1 − ∑ (𝑦𝑡𝑒𝑠𝑡
(𝑛)

− 𝑦̂𝑡𝑒𝑠𝑡
(𝑛)

)
2𝑁𝑡𝑒𝑠𝑡

𝑛=1 ∑ (𝑦𝑡𝑒𝑠𝑡
(𝑛)

− 𝑦̅𝑡𝑒𝑠𝑡)
2𝑁𝑡𝑒𝑠𝑡

𝑛=1⁄   (7) 

may be applied as metric, where 𝑦𝑡𝑒𝑠𝑡
(𝑛)

= 𝑦(𝒙(𝑛) ∈ 𝒳𝑡𝑒𝑠𝑡) are the true values and 𝑦̂𝑡𝑒𝑠𝑡
(𝑛)

= 𝑦̂(𝒙(𝑛) ∈ 𝒳𝑡𝑒𝑠𝑡) 
are the predicted values of the test set, respectively; 𝑦̅𝑡𝑒𝑠𝑡 refers to the arithmetic mean of the evaluated 
test-data. 

2.3 Classification 
To determine the strictly binary property of a design 𝒙 to be viable, a probabilistic approach is used here 
to estimate the membership of 𝒙 belonging to the domain 𝒳𝑣 of viable designs: 

𝑝𝑣(𝒙; 𝜽, 𝜷) = ℙ[𝒙 ∈ 𝒳𝑣] ∈ [0,1]. (8) 
A certain design 𝒙 is then estimated to be viable, i.e., 𝑣̂(𝒙; 𝑝𝑡ℎ) = 1, if 𝑝𝑣 is above some cut-off 
threshold 𝑝𝑡ℎ ∈ [0,1], i.e., 𝑝𝑣(𝒙) ≥ 𝑝𝑡ℎ. 
For classification, the training process differs from regression in terms of the loss-function. Here, the 
cross-entropy will be minimized: 

𝐿𝑐𝑙𝑎𝑠𝑠 = −
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ [𝑝𝑣,𝑡𝑟𝑎𝑖𝑛

(𝑛)
𝑙𝑜𝑔 𝑝𝑣,𝑡𝑟𝑎𝑖𝑛

(𝑛)
+ (1 − 𝑝𝑣,𝑡𝑟𝑎𝑖𝑛

(𝑛)
) 𝑙𝑜𝑔(1 − 𝑝𝑣,𝑡𝑟𝑎𝑖𝑛

(𝑛)
)]

𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1 . (9) 

To test or validate a classification model, the confusion matrix (see e.g. [17]) may be considered. 
Depending on a certain value for cut-off threshold 𝑝𝑡ℎ, the predictions  𝑣̂(𝑛) = 1 (𝑃 ≙ positive) or 𝑣̂(𝑛) =
0 (𝑁 ≙ negative) for test-data can be correct (𝑇 ≙ true) or wrong (𝐹 ≙ false) resulting in a confusion 
matrix of combinations 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁. The approximation quality may then be assessed, as a function 
of 𝑝𝑡ℎ, by the receiver operating characteristics (ROC) (see e.g. [17]) curve, which is a plot of the true 
positive rate 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) vs. the false positive rate 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁). Especially the area 
under the ROC curve (𝑅𝑂𝐶 𝐴𝑈𝐶) typically serves as a scalar metric to assess the classification model. 

2.4 Cross-validation for model selection 
Cross-validation (CV) is a frequently used re-sampling method in the process of model selection [16] to 
find the most appropriate set of hyper-parameters (see e.g. [18] [19]). Given a specific set of samples 
and hyper-parameters, CV re-samples the data into training and validation subsets. Here, repeated 𝑘-
fold CV is applied for regression to find models with both low variance and bias [20]. The 𝑘-fold CV 
randomly splits the given data set into 𝑘 disjoint and equally sized subsets. Then, the surrogates are 
trained on the union of (𝑘 − 1) subsets and applied to the remaining subset to get a performance 
measure ((7) in case of regression or 𝑅𝑂𝐶 𝐴𝑈𝐶 in case of classification). This procedure is repeated 𝑘-
times, whereby a different subset is used for assessment in each repetition. The average of the 𝑘 
performance measures then serves as final quality measure. Repeated 𝑘-fold CV randomly repeats this 
procedure 𝑚 times resulting in a final performance measure as the average over 𝑘 × 𝑚 training-
validation repetitions. Throughout this paper, 𝑘 = 10 and 𝑚 = 20 is chosen, which results in 10 × 20 =
200 repetitions. For classification repeated stratified 𝑘-fold CV (see e.g. [19]) is applied which similarly 
splits the data sets into 𝑘 subsets, but accounts for a consistent proportion between both classes in 
each subset.  

2.5 Multi-layer Perceptron 
A multi-layer perceptron model (MLP, see e.g. [21]) is a commonly used, fully connected, feed-forward 
artificial neural network that consist of 𝑅 ≥ 2 layers of neurons. The first layer is called input layer, the 
last one output layer. The remaining (𝑅 − 2) layers are called hidden layers. Each layer 𝑟 ∈ {1, … , 𝑅} 
consists of an individual number 𝐽𝑟 of neurons, where the number of neurons in the input (𝑟 = 1) and 
output layer (𝑟 = 𝑅) are equal to the number of input variables and output targets, respectively. The 
inputs of a single neuron 𝑗𝑟 ∈ {1, … , 𝐽𝑟} within the layers 𝑟 ∈ {2, … , 𝑅} are the weighted outputs from all 
the neurons in the precursory layer (𝑟 − 1). The term neuron describes the process of two consecutive 
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mathematical operations: (1) calculate the sum 𝑆̅𝑟,𝑗𝑟
 of all inputs and (2) apply a non-linear activation 

function 𝑎(𝑆̅𝑟,𝑗𝑟
) to get the output: 

𝑆𝑟,𝑗𝑟
= 𝑎 (𝜃𝑟,0,𝑗𝑟

+ ∑ 𝑆(𝑟−1,𝑗𝑟−1) ∙ 𝜃𝑟,𝑗𝑟−1,𝑗𝑟

𝐽𝑟−1
𝑗𝑟−1=1 )  (10) 

where 𝜃𝑟,0,𝑗𝑟
 is a bias and 𝜃𝑟,𝑗𝑟−1,𝑗𝑟

 are the weights of the input of neuron 𝑗𝑟 in layer 𝑟 coming from neuron 
𝑗𝑟−1 in layer (𝑟 − 1). The number of neurons in the hidden layers is an important hyper-parameter and 
part of the model-selection process. To improve the training of the MLP model, the loss functions (6) 
and (9) are expanded by a L2-regularization term resulting in  

𝐿𝑀𝐿𝑃 = 𝐿𝑙 + 𝜆
1

2𝑁𝑡𝑟𝑎𝑖𝑛
‖𝜽‖2

2, 𝑙 ∈ {𝑟𝑒𝑔, 𝑐𝑙𝑎𝑠𝑠} (11) 

with λ as additional hyper-parameter for tuning the strength of the regularization. During CV, the 
following hyper-parameters are investigated in a full-factorial combination to find an appropriate MLP-
model: 𝐽𝑟 ∈ {20, 21, 22, 23, 24} and λ ∈ {2−5, 2−4, … , 25}. Thus, 5 × 11 = 55 different MLP models are 
investigated during CV. The number of layers is fixed to the value 𝑅 = 3, i.e., only a single hidden layer 
is used. For regression, hyperbolic tangent is used as activation function, for classification the sigmoid 
function is used. 

2.6 Extremely randomized trees 
Extremely randomized trees (Extra-Trees, ET) [22] is a tree-based ensemble method that combines a 
number of randomly grown (decision- or regression-) trees. As with classical tree-based ensembles, 
both the variable as well as the point to split each variable at each node to minimize the loss-function 
are determined during training. In contrast to classical tree-based ensembles, the point to split each of 
the selected variables at each node is selected completely at random. The final output of the whole 
ensemble is calculated here by the average over all individual trees. Important hyper-parameters are 
the number of trees 𝑀 within the ensemble, the relative amount 𝐾 of randomly selected variables at 
each node to search for the best split as well as the minimum number of samples required to split a 
node 𝑛𝑚𝑖𝑛. During CV, the following hyper-parameters are investigated in a full-factorial combination to 
find an appropriate ET-model: 𝑀 ∈ {200,400,800}, 𝐾 ∈ {0.1, 0.2, … , 1.0} and 𝑛𝑚𝑖𝑛 ∈ {2, 4, 8, 16}. Thus, 
3 × 10 × 4 = 120 different ET models are investigated during CV. 

3 Surrogate models using all parameters 
At first, all 117 design parameters of the aero engine are used to find appropriate surrogate models for 
the three subtasks: (1) regression for SFC, (2) regression for mass and (3) classification of viability. The 
models are trained, validated and tested with respect to the metrics described in Section 2. 
Figure 3 shows the results of the CV process using the training data. The blue circles represent MLP 
models for all combinations of hyper-parameters mentioned in subsection 2.5, whereas orange squares 
represent ET models for the hyper-parameter combinations given in subsection 2.6. The results are 
sorted with respect to metrics 𝑅2 or 𝐴𝑈𝐶 𝑅𝑂𝐶, respectively. For the application here, the better results 
for regression are obtained by MLP models, whereas the better results for classification are achieved 
by ET models. 

  
Figure 3. CV-results using all design parameters for MLP (●) and ET (■) surrogates: average scores 

for a) SFC, b) mass and c) viability. 

In more detail, the overall best regression results are obtained by the MLPs with 𝐽2 = 16 neurons and 
a moderate regularization strength of 𝜆 = 4.0 for both SFC and mass regression. The worst results 
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using MLPs are obtained with only one neuron and small regularization for both criteria. Overall, the ET 
models are less performant for regression. The sloping levels of the ETs are determined by the hyper-
parameter 𝐾, where larger values for 𝐾 lead to better results and vice versa. The best regression results 
using ETs are obtained with 𝐾 = 1.0, 𝑛 = 4 and 𝑀 = 800 for both regression tasks. 
For classification, the circumstances are, to a certain extent, kind of reversed. Here, ETs deliver the 
overall best results with a moderate 𝐾 = 0.4, 𝑀 = 800 and a less important value 𝑛𝑚𝑖𝑛 = 4. The drop in 
ET’s performance is mainly caused by too small values of both 𝐾 and 𝑀. For MLP, it turned out that the 
most important hyper-parameter is the regularization strength 𝜆, where the best results are achieved 
by 𝐽2 = 1 and a regularization strength of 𝜆 = 8. However, the performance for more neurons remains 
at a similar level for 𝜆 > 1, whereas the performance decrease is mainly caused by too small 
regularization.  
Based on these CV-results, the best performing models are selected with best settings of associated 
hyper-parameters and trained to the whole set of training data. They may now be applied to the test 
data, which are unknown new samples for the selected and trained models. Therefore, they serve as 
final estimate of the model quality. The results for test data are shown in Figure 4. 

   
Figure 4. Results using all design parameters: test results for SFC (a) and mass (b) regression with 

MLP and c) ROC curve of ET classification model for viability. 

In Figure 4.a and Figure 4.b the predicted values for SFC and mass are compared with the true test 
data. For an ideal prediction with  𝑅2 = 1 (7), all points would lie exactly on the black line. In the real 
application here, a slight scatter about this ideal prediction can be seen, which is a bit smaller in the 
case of SFC regression with 𝑅2 = 0.97 than in the case of mass regression with 𝑅2 = 0.95. 
Nevertheless, both regression models can approximate the true data very well. 
Figure 4.c shows the ROC curve for the classification of viability, where the color visualizes the cut-off 
threshold 𝑝𝑡ℎ. In the present case, the best classification model achieves an 𝐴𝑈𝐶 𝑅𝑂𝐶 = 0.84 (see 
subsection 2.3). For the ideal value of 𝐴𝑈𝐶 𝑅𝑂𝐶 = 1, the 𝑅𝑂𝐶 curve would have to run through the ideal 
point (𝐹𝑃𝑅 = 0, 𝑇𝑃𝑅 = 1), which is marked by the black circle in Figure 4c. The black star marks the 
point on the 𝑅𝑂𝐶 curve with the smallest Euclidean distance from this ideal point, achieved with 𝑝𝑡ℎ =
0.54. It should be noted here, that each point on the 𝑅𝑂𝐶 curve is a Pareto-optimal solution of bi-criterion 
optimization minimizing 𝐹𝑃𝑅 and maximizing the 𝑇𝑃𝑅. Thus, the choice of a particular cut-off threshold 
scalarizes the classification problem, which should be considered with care. If preference between 𝐹𝑃𝑅 
and 𝑇𝑃𝑅 changes, another tradeoff may be more suitable. 

4 Dimension reduction of design space using parameter 
ranking 

As mentioned above, reducing the dimensionality of the aero engine design problem helps to simplify 
SAO. For this purpose, the design parameters need to be sorted w.r.t. to their individual influence on 
SFC, mass and viability. Then, based on this sorting, the best possible set of design parameters may 
be estimated using CV. 
4.1 Global sensitivity analysis 
The three outcomes of the original analysis model can be expressed as functions 𝑦𝑆𝐹𝐶(𝒙), 𝑦𝑚(𝒙) and 
𝑣(𝒙) with 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝐷]𝑇. Quantitative global sensitivity analysis (SA) can be used to rank the design 
variables 𝑥𝑑 w.r.t. their influence on these functions (see e.g. [23], [24]). Here, the model independent 
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variance-based SA-method called Sobol method [25] is applied. To measure the ‘total’ effect of a 
specific variable 𝑥𝑑, i.e., its first order (𝑥𝑑 alone) and higher order effects (interactions with the remaining 
variables), the total sensitivity index 𝑆𝑇𝑑 ([24],[26]) is defined as 

𝑆𝑇𝑑 = 1 −
𝑉𝒙~𝑑

(𝐸𝑥𝑑
[𝑦|𝒙~𝑑])

𝑉(𝑦)
 (12) 

where 𝒙~𝑑 includes all variables except 𝑥𝑑 and 𝑉𝒙~𝑑
(𝐸𝑥𝑑

[𝑦|𝒙~𝑑]) determines the expected reduction in 
variance caused by fixed values of 𝒙~𝑑 while 𝑥𝑑 is varied over all possible values. In practise, 𝑆𝑇𝑑 is 
estimated by quasi Monte Carlo (MC) sampling using 2𝑁𝑀𝐶 × (𝐷 + 1) samples, where 𝑁𝑀𝐶 should be 
sufficiently large (at least 500) [26]. Here, 𝑁𝑀𝐶 = 212 = 4096 is chosen, which leads to 2 × 4096 × 118 =
966.656 samples in total. The Sobol method is carried out using the Python library SALib [27]. Since 
the original analysis function would be too expensive to evaluate the large sample, the best performing 
surrogates found in Section 3 are used instead, which is a matter of a few minutes even on low-cost 
computers. 
The obtained 𝑆𝑇𝑑 results for each 𝑥𝑑 are sorted with respect to their value, ranking the estimated 
influence of the design variables from 1 to 117. Figure 5 shows the 40 highest ranked values of 𝑆𝑇𝑑. 
Note that the abscissa does not show the variables 𝑥1 up to 𝑥40, but only the ranking with descending 
importance, where the order of corresponding design parameters is different for SFC (●), mass (■) and 
viability (♦). 

 
Figure 5. Total sensitivity index 𝑆𝑇𝑑 of the design variables for SFC (●), mass (■) and viability (♦) with 

descending variable influence associated with a higher ranking. 

4.2 Finding reduced subsets of variables 
From the original set of indices ℐ = {1,2, … , 𝐷} representing all design parameters and the previously 
estimated ranking of the individual variables based on 𝑆𝑇𝑑, three reduced sets of indices ℐ𝑘

𝑟𝑒𝑑 ⊆ ℐ, 𝑘 ∈
{𝑆𝐹𝐶, 𝑚, 𝑣}, of variables 𝑥𝑑, 𝑑 ∈ ℐ𝑘

𝑟𝑒𝑑 , have now to be found for each of the optimization criteria and the 
viability constraint. For this purpose, a procedure based on the prediction quality is used, which has 
already been used in a similar form by Most and Will [28]. It finds the most optimal set of parameters 
by cross-validating the prediction performance of different sets of parameters. 
Starting with a set containing only the most important parameter (being ranked as one in Figure 5), 
several MLPs with only this single input are cross-validated based on the training set used above and 
the various hyper-parameter combinations in Section 2.5. The resulting best average performance 
serves as reference. Then the two best ranked parameters are used as inputs for the MLPs and 
processed as before to provide a cross-validated performance measure. This is continued with three, 
four and more parameters up to 40, resulting in the performance measures in Figure 6 depending on 
the number of input parameters for the MLPs in the order of the ranking provided in Figure 5. 
As can be seen, all three curves first increase with the number of parameters up to a certain and 
individual point. This number of parameters, for which the highest cross-validated performance is found, 
is marked in green. For the regression of SFC, the highest performance of 𝑅2 ≈ 0.98 is obtained using 
|ℐ𝑆𝐹𝐶

𝑟𝑒𝑑| = 32 parameters. For mass, the best performance of  𝑅2 ≈ 0.95 is obtained with |ℐ𝑚
𝑟𝑒𝑑| = 28 

variables. For both regression problems, the performance stays almost constant beyond this point with 
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only minor performance changes. For classification, the situation is a little different. Here, the highest 
performance of 𝐴𝑈𝐶 𝑅𝑂𝐶 ≈ 0.85 is achieved with a number of |ℐ𝑣

𝑟𝑒𝑑| = 15 highest ranked design 
parameters. Adding more parameters deteriorates the model performance significantly. Note that if all 
117 variables would be added to the model, each performance would correspond to the results of the 
cross-validated model selection procedure in Section 3. 

  
Figure 6. Mean cross-validation scores 𝑅2 (regression) and 𝑅𝑂𝐶 𝐴𝑈𝐶 (classification) using different 

subsets of design variables in descending importance order. 

4.3 Model selection using the reduced sets of design parameters 
Analogous to the model selection procedure in Section 3, the three reduced sets of design parameters 
are now used to find the most appropriate model out of the MLPs and ETs described in subsections 2.5 
and 2.6. Figure 7 shows the results in analogous form to Figure 3. As can be seen, the curves behave 
rather similar, where surprisingly models with the reduced dimension generally show a (slightly) better 
performance. This is particularly evident in Figure 7c for classification, where certain MLP topologies 
now achieve even better performance than the ET models. The MLP approach is now able to detect 
relations with rather small to moderate regularizations of 𝜆 = 0.5, but with significantly more neurons of 
𝐽2 = 16 in contrast to the results from Section 3. The worst performing MLP models are mainly 
characterized by very small regularizations. The ET approach behaves similar to Section 3, where best 
results are obtained by the models using 𝑀 = 800 trees and 𝐾 = 0.3. The parameter 𝑛𝑚𝑖𝑛 plays a minor 
role, but should be around 𝑛𝑚𝑖𝑛 = 8. 
The highest regression performance is dominated by the MLPs, just as before in Section 3. Different to 
Section 3 is now, that the respective topologies of the best MLPs differ between SFC and mass 
regression. For SFC, the best results are generally obtained with a high number of neurons 𝐽2 = 16 and 
a moderate regularization strength 𝜆 = 0.5, whereas for mass regression a rather small number of 
neurons 𝐽2 = 4 and moderate to small regularizations 𝜆 < 1 performs best. Overall, the ETs perform 
worse than the MLPs, where the best ET results are obtained, as before in Section 3, for both criteria 
for high values of 𝐾 and 𝑀 as well as small values for 𝑛𝑚𝑖𝑛.  

 
Figure 7. CV-results using reduced sets of parameters for surrogate models MLP (●) and ET (■): 

average scores for a) SFC, b) mass and c) viability. 

4.4 Testing the best found surrogates using reduced sets of parameters 
Similar to Section 3, the best models are again applied to the test data where now, based on the results 
from the model selection procedure, MLPs are used for all three criteria. The predictions of the test data 
regarding SFC, mass and viability, as well as the corresponding metrics are shown in Figure 8. 
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Compared to Figure 4, no severe degradation in the prediction of the unknown test data occurred due 
to the reduced dimensionality. Only the prediction of the mass now results in larger deviations for some 
individual samples. The 𝑅2 remains roughly the same due to the overall slight decrease in variance 
about the ideal black line. 

  
Figure 8. Test-results using reduced subsets of design parameters and MLPs for both regression and 

classification. 

5 Design optimization including the assessment of viability 
Based on the models from subsection 4.4, now a multi-objective aero engine optimization with reduced 
subsets of design parameters can be carried out, where the viability of a design can be incorporated 
as, in contrast to a usual SAO, an additional design constraint. Here, the viability is intentionally the 
only constraint. For the purpose of optimization, the reduced sets of parameters are combined to a 
union set of design parameters. Figure 9 illustrates the three individual sets of parameter indices ℐ𝑘

𝑟𝑒𝑑 
corresponding to the design parameters used by the three different surrogates for 𝑘 ∈ {𝑆𝐹𝐶, 𝑚, 𝑣}. The 
design vector 𝒙𝑟𝑒𝑑 of parameters to be considered for optimization has to combine these parameters 
𝑥𝑑, where 𝑑 ∈ ℐ𝑟𝑒𝑑 = ℐ𝑆𝐹𝐶

𝑟𝑒𝑑 ∪ ℐ𝑚
𝑟𝑒𝑑 ∪ ℐ𝑣

𝑟𝑒𝑑. Since the three different parameter sets have some 
intersections, the cardinality of the union set is |ℐ𝑟𝑒𝑑| = 44.  
The bi-criterion optimization using criteria surrogates 𝒚̂ = [𝑦̂𝑆𝐹𝐶 , 𝑦̂𝑚]T and viability constraint 𝑝𝑣 ≥ 𝑝𝑡ℎ 
then reads as  

𝑚𝑖𝑛
𝒙𝑟𝑒𝑑∈𝒳𝑟𝑒𝑑

𝒚̂(𝒙𝑟𝑒𝑑) where 𝒳𝑟𝑒𝑑 ≔ {𝒙𝑟𝑒𝑑 ∈ ℝ44|𝑝𝑣(𝒙𝑟𝑒𝑑) ≥ 𝑝𝑡ℎ} (13) 
The optimization task is conducted by the genetic algorithm NSGA-II [29] implemented in the Python 
library pymoo [30] using a population size of 100 and 200 generations. 

 
Figure 9. Individual index-subsets ℐ𝑘

𝑟𝑒𝑑, 𝑘 ∈ {𝑆𝐹𝐶, 𝑚𝑎𝑠𝑠, 𝑣}, and union ℐ𝑟𝑒𝑑 of design parameters for 
optimization 

Design evaluations supposed by the optimizer are carried out with the three best found surrogates in 
subsection 4.4 where variation of the reduced set of design parameters 𝒙𝑟𝑒𝑑 ∈ 𝒳𝑟𝑒𝑑 is sufficient. In total, 
three distinct optimization runs are conducted with different values 𝑝𝑡ℎ ∈ {0, 0.54, 0.8} for the cut-off 
threshold. Since the estimated probability 𝑝𝑣(𝒙𝑟𝑒𝑑) of 𝒙𝑟𝑒𝑑 to be viable is non-negative (𝑝𝑣(𝒙𝑟𝑒𝑑) ≥
0 ∀ 𝒙𝑟𝑒𝑑), the value 𝑝𝑡ℎ = 0 represents an optimization without taking into account the viability 

ℐ𝑆𝐹𝐶
𝑟𝑒𝑑 ℐ𝑚

𝑟𝑒𝑑 

ℐ𝑣
𝑟𝑒𝑑 ℐ𝑟𝑒𝑑 
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constraint. The value 𝑝𝑡ℎ = 0.54 represents the point on the ROC with the smallest Euclidean distance 
to the ideal point in Figure 8.c and 𝑝𝑡ℎ = 0.8 is set to an arbitrary more conservative value to reduce the 
FPR. At this point, it should be noted again that there is no best point on the 𝑅𝑂𝐶, but all are optimal 
trade-offs. Depending on the use case, setting any other value greater than zero may also be justified 
and appropriate. 
Each of the three optimizations yields a set of Pareto-optimal solutions, as shown in Figure 10, where 
Figure 10.a shows the Pareto-optimal solutions as well as the outcomes of the training DoE and Figure 
10.b shows a magnified section of the Pareto-optimal solutions. The color of each solution represents 
the outcomes of the classification 𝑝𝑣 and thus the estimated probability that the design belongs to the 
set of viable designs. While the optimization without incorporating viability (𝑝𝑡ℎ = 0) yields the best 
results with respect to SFC and mass, the classification of all these designs would consistently suggest 
them as non-viable (𝑝𝑣 → 0), hence unrealistic designs. When viability is taken into account (by a 
constraint using 𝑝𝑡ℎ > 0), the set of Pareto-optimal solutions shifts slightly toward worse designs. Here, 
more strict viability constraints mainly affect the upper left part of the Pareto-front for small SFC-values 
and relatively large masses. However, the difference is rather small and all of the designs now have a 
significantly higher estimated probability of being viable. Even the results for the strictest constraint are 
only slightly worse w.r.t. SFC and mass. 
The relatively small differences w.r.t. the optimization criteria may, despite the considerable differences 
w.r.t. the constraint, caused by the fact that separate sets of design parameters were assigned to each 
of the criteria and the constraint (see Figure 9). Although these sets have intersections, they also 
contain some design parameters that are exclusive to the respective criteria and constraint. Thus, the 
individual criteria as well as the constraint can, at least to a certain extent, be fine-tuned separately of 
each other. 

  
Figure 10. Resulting Pareto-optimal solutions for different cut-off thresholds 𝑝𝑡ℎ (▼: 0, ■: 0.54, ♦: 0.8) 

relative to the training DoE outcomes (●) in the a) overall view and b) magnified section. 

6 Conclusions 
In the present work, surrogate-assisted optimization of a high-dimensional aero engine design problem 
incorporating the additional information about the viability of designs into the optimization via constraint 
is investigated on the basis of an industrial application example, i.e., preliminary aero engine design. 
The following conclusions can be drawn from this research: (i) the type and hyper-parameters of the 
most appropriate surrogate model depends on the problem as well as the dimensionality and should be 
chosen carefully; (ii) a cross-validated search along the ranking of parameters based on the results of 
variance-based sensitivity analysis can reduce the dimension significantly without decreasing the 
prediction performance; (iii) the incorporation of viability into a surrogate-assisted optimization is 
reasonable or even necessary to avoid pseudo-optimal non-viable results; (iv) identifying individual 
subsets of design parameters for the individual optimization criteria and constraint may help to find good 
results while satisfying the constraint. 
The conducted investigation shows the workability of the presented framework and emphasizes that 
viability, whenever it might be an issue in the context of surrogate-assisted optimization, should be 
considered in the process. 
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Nevertheless, this investigation has its limitations too and can only be the start for answering further 
questions. These include, among others, the inclusion of usual optimization constraints that narrow the 
feasible design space, a more imbalanced viability in the data as well as a smaller initial sample size 
and the incorporation of adaptive re-sampling strategies for this high-dimensional application. 
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