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Abstract 

More and more components made of short-fiber reinforced plastics are being used in modern 
powertrains. A reason for this is the good acoustic properties due to the lower stiffness and higher 
damping compared to classic metallic materials. To meet the increased customer demand regarding 
the acoustic sound comfort of internal combustion or electric powertrains, it is necessary to precisely 
predict the vibration behavior of components that are responsible for the transmission of structure-borne 
noise into the vehicle structure. Today’s simulations often cannot satisfactorily predict the actual 
vibration behavior of short-fiber reinforced plastics. The required material data, in particular damping, 
is often obtained from static tests or considered unknown. Frequency-dependent material properties 
are required for a reliable prediction of the special viscoelastic properties of the short-fiber reinforced 
plastics. By means of a new test method based on flexural resonance vibrations, viscoelastic material 
data can be characterized in a frequency range between 100 Hz and 10 kHz, considering environmental 
conditions such as temperature and humidity. Using these material data, a simulation of the structural 
dynamic behavior can be performed using either of two modeling approaches: microscopic or 
macroscopic. The basis is the orientation of the fibers from an injection molding simulation. The 
microscopic modeling approach uses a two-step homogenization of the properties of the matrix, fiber 
and matrix-fiber-interphase followed by a spatial discretization into material databases, whilst the 
macroscopic modeling approach uses a one-step homogenization based on directly measured 
viscoelastic material data with different fiber orientation. The necessary assumptions and challenges 
are discussed to categorize the usage of the models in proper cases.  
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1 Introduction 
The usage of short-fiber reinforced plastics (SFRP) in modern powertrains is of interest for the NVH 
(noise, vibration, harshness) improvement of combustion engines and electric drives. Compared to 
classic materials the SFRP materials stand out with their lower stiffness and higher damping. Engine 
and transmission brackets made of SFRP are well suited for this application and have been in series 
production for several years. They transmit less structure-borne noise from the drivetrain to the carbody 
and are therefore a crucial element in the reduction of vehicle noise. To meet increased customer 
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demands regarding the acoustic comfort of modern vehicles, a precise prediction of the vibration 
behavior is necessary at an early stage of the development process. ([1]-[5]) 
The frequency range and the environmental conditions of interest depend on the application area of the 
SFRP structural components. Engine and transmission brackets for combustion engines show 
resonances at low frequencies up to 1 kHz, whereas noise problems of transmissions or electric drives 
typically occur at high frequencies up to 10 kHz. The temperatures close to the engine are typically up 
to 100 °C and the humidity varies in a wide range depending on the environment. 
Today’s simulations are often not able to satisfactorily predict the actual vibration behavior of SFRP in 
an acoustically relevant frequency range of up to 10 kHz. The required viscoelastic material properties, 
in particular the damping, frequently originate from a low frequency dynamic mechanical analysis (DMA) 
or are unknown. There is currently a lack of suitable test methods to directly determine the exact 
dynamic complex modulus. Its stiffness and damping have to be described in a large frequency range 
under consideration of ambient conditions such as temperature and humidity as well as fiber orientation. 
Mathematical shift approaches such as the time-temperature superposition (TTS) are used together 
with the DMA to extrapolate the usable frequency range but do not always provide clear and reliable 
results [6]. A reason for this is that TTS cannot be applied to every material [7]. Other reasons for this 
are a lack of reproducibility of the properties [8]. Additionally, they can only be used as relative but not 
as absolute values [9]. Precise material properties as well as a suitable material model are required to 
be able to reproduce the special viscoelastic vibration behavior of the SFRP without using an 
experimental model calibration or reverse engineering ([5], [10]-[12]). Isotropic modeling of composite 
stiffness and damping is the fundamental method for simulating the structural dynamics of SFRP. In 
this process, the experimentally determined storage modulus of fiber-reinforced material specimens is 
scaled with a factor. As a result of the uncertainty of the experimental material characterization and 
definition of the scaling factor, high deviations in the isotropic simulation are expected. On the other 
hand, the computational costs are low. As a result, isotropic calculations are still used today for early 
predictions of the structural dynamics. An optimization of the isotropic simulation is carried out by means 
of reverse engineering in comparison with experiments. [1] 
Micromechanical homogenization approaches of composite stiffness represent an established method 
for modeling the material behavior of SFRP. For the homogenization, researchers often apply the mean-
field theory. It is a mathematical-physical modeling approach in which heterogeneous stress and strain 
fields are described as an averaged subsection ([1], [13]-[16]). This approach originates of 
investigations by Eshelby [16] and leads to more advanced approaches, e.g. the Mori & Tanaka [17] or 
Tandon & Weng models [18]. More extended approaches such as the Double-Inclusion (DI) model by 
Hori et al [19] or the Reconsidered-Double-Inclusion (RDI) model by Schöneich [20] represents three-
phase-homogenizations. These methods show that a more precise homogenization of the composite 
stiffness is achieved by considering the interphase between fiber and matrix. Methods for homogenizing 
the composite damping are mainly based on one-dimensional approaches. Rayleigh damping, for 
example, represents a mathematical method. Here, the composite damping is determined by scalar 
multiplication of the composite stiffness and mass matrix with scaling coefficients. Another approach is 
the definition of a global damping tensor, where the composite damping is equal to the damping of the 
matrix due to the assumption, that the main damping is contributed from the matrix material. Assuming 
isotropic material behavior for the matrix material, the loss factor is defined as the ratio of storage and 
loss modulus of the matrix ([21]-[23]). Advanced methods focus on a homogenization of the composite 
damping. Here, the damping tensor is defined by homogenization methods of the composite 
components. As already shown, the correct experimental determination of the storage and loss modulus 
of fiber-reinforced plastics is a challenging task. For this reason, these types of the homogenization of 
composite damping are reduced to simplified forms such as orthotropic isotropy. In most cases, 
experimental data is not used, and numerical optimizations methods of the composite damping are 
preferred. ([24]-[25])  
The study presents a combined approach using a microscopic and a macroscopic material model 
enabled by a new test method to predict the actual vibration behavior of short-fiber reinforced plastics 
without the use of reverse engineering. As an advanced version of the flexural resonance method, the 
experimental approach allows to directly determine viscoelastic material properties dependent on 
frequency, temperature, and humidity. Two different modeling approaches were considered for this 
purpose, a microscopic approach based on a two-step, micromechanical homogenization, and a 
macroscopic approach with a one-step homogenization based on directly measured composite 
properties. Both approaches are compared with an isotropic and a homogenization approach according 
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to the Mori & Tanaka model. Furthermore, all simulation results are compared to measured structural 
dynamics of SFRP specimens and a component. 

2 Methods 
The fundamental basis of the holistic approach is precise viscoelastic material data characterized 
directly in the respective frequency, consisting of stiffness in the form of the storage modulus and 
damping in the form of the loss factor respectively loss modulus. An alternative approach to the 
established DMA is the flexural resonance method. The standard ISO 6721-3 [26] describes how 
material properties can be derived from resonance curves of specimens. The frequency position of the 
resonances and the geometry of the specimen are used to determine the storage modulus. The width 
of the resonance peak is used to determine the loss modulus using the 3dB method. However, it is 
shown that the mounting method and contactless excitation proposed in the standard only delivers good 
results up to frequencies of approx. 1000 Hz ([27]-[29]). More recent approaches to mounting, excitation 
and measurement for a much larger frequency range, by using e.g. a shaker and a laser vibrometer, 
can be found in ([30]-[32]). Therefore, a new experimental procedure was developed and presented in 
[33]. Cuboid specimens are fixed damping-free on one side to a decoupled mounting structure inside a 
climatic chamber and excited using a shaker. The excitation and response are measured contactless 
by means of a laser vibrometer. The resulting frequency response is then evaluated in the resonances 
for the viscoelastic material properties storage modulus and loss factor. Since not only one but multiple 
higher-order resonances occur in the investigated frequency range, a frequency-dependent behavior 
can be characterized. The schematic experimental setup and exemplary viscoelastic data are shown in 
Figure 1. 

 
Figure 1.a. Schematic and b. real test setup [33]. 

For more detailed explanations of the special features and the optimization of the experimental setup 
to enable the generation of this data as well as a comparison with the DMA, see [33].  

2.1 Microscopic modeling 
The microscopic modeling approach uses a two-step homogenization method. First, the effective 
stiffness and damping tensor of the short-fiber reinforced composite is homogenized as ratio of the 
properties of the matrix, fiber and interphase. The homogenization is based on an advanced formulation 
of the Reconsidered-Double-Inclusion (RDI) model including the storage and loss modulus. Thus, the 
homogenization of the composite stiffness tensor is defined as 

𝑺𝑅𝐷𝐼
′ = 𝑺𝑆

𝑀 + 𝜈𝐹(𝑺𝑆
𝐹 − 𝑺𝑆

𝑀):𝑩𝐹 + 𝜈𝐶(𝑺𝑆
𝐶 − 𝑺𝑆

𝑀):𝑩𝐶  , (1) 
and the homogenization equation of the composite damping following as 

𝑺𝑅𝐷𝐼
′′ = 𝑺𝐿

𝑀 + 𝜈𝐹(𝑺𝐿
𝐹 − 𝑺𝐿

𝑀):𝑩𝐹 + 𝜈𝐶(𝑺𝐿
𝐶 − 𝑺𝐿

𝑀):𝑩𝐶  , (2) 
with 𝑺𝑆

𝑀 , 𝑺𝑆
𝐹 , 𝑺𝑆

𝐶 as stiffness and 𝑺𝐿
𝑀 , 𝑺𝐿

𝐹 , 𝑺𝐿
𝐶 as damping tensor of the matrix, fiber and interphase. 

Furthermore, 𝜈𝐹 , 𝜈𝐶 equals the volume fraction and 𝑩𝐹 , 𝑩𝐶 equals the concentration tensor of fiber or 
interphase. Here, the stiffness and damping tensors of the matrix, fiber and interphase are defined as 
inverse of the compliance tensor with isotropic modulus, depending on whether the storage or loss 
modulus is fitted into the homogenization. In this context, the frequency-, temperature- and humidity-
dependent storage and loss modulus of the matrix material will be used. The experimental 

a. b. 
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characterization of the viscoelastic behavior is performed by using the presented approach of the 
flexural vibration tests. Following this, the effective stiffness and damping tensors are combined to the 
complex stiffness tensor 

𝑺𝑅𝐷𝐼
∗ = 𝑺𝑅𝐷𝐼

′ + 𝑖𝑺𝑅𝐷𝐼
′′ . (3) 

In the second homogenization step, material databases are generated. Here, the complex stiffness 
tensor is transformed into a discrete number of spatial directions 𝑝𝑖. Thereby, the construction of an ico-
sphere is used [34]. Thus, a homogenous discretization of spatial transformation directions is ensured. 
Following this, the Maximum-Entropy-Method (MEM) is used to reconstruct the orientation distribution 
function (ODF) for a discrete number of second-order fiber orientation tensors 𝐀𝑖𝑖

𝑞 . The MEM uses the 
deviation between a given ODF in a discrete database and a calculated ODF of the fiber orientation, to 
minimize entropy. Accordingly, the sum function of the stiffness and damping tensors in spatial direction 
of the first step 𝐒𝑅𝐷𝐼,𝑖

∗  is weighted over the spatial ODF of the second step 𝑤𝑖
𝑞 and leads to a discrete 

material database with 

𝑺𝑒𝑓𝑓,𝑅𝐷𝐼
∗,𝑞 = ∑ 𝑺𝑅𝐷𝐼,𝑖

∗𝑁
𝑖 𝑤𝑖

𝑞. (4) 
The Arbitrary-Reconsidered-Double-Inclusion (ARDI) model defines this approach. Figure 2 illustrates 
the approach to define discrete material databases by using the ARDI model. 
Following this, a filling simulation is used to predict the fiber orientation on component level. By using a 
process-structure coupling, the fiber orientation of the filling simulation will be transferred to the 
structural simulation. An assignment of the discrete material properties of the ARDI material model and 
the structural simulation is proceeded over the minimum error deviation between the fiber orientation of 
the component and the discrete ARDI database. Finally, a Prony series formulation is used to calculate 
the viscoelastic stiffness and damping behavior dependent on the defined conditions of frequency, 
temperature and humidity in a structural dynamics simulation. Detailed information about the 
homogenization of the composite stiffness and damping, as well as the procedure to predict the 
frequency response of SFRP components using the ARDI model is provided in ([35]-[36]). 

 
Figure 2. Method to define discrete material databases with ARDI model. 

2.2 Macroscopic modeling 
The other approach is the macroscopic modeling with single-step homogenization. It is based solely on 
the second-order orientation tensor and was presented in [37]. The goal is to use the viscoelastic 
material properties from the measurement directly and macroscopically. To assign an orthotropic 
stiffness matrix to each FE-element, the material data is taken directly from a large, universally valid 
material card using an angle-dependent description. The 2nd order orientation tensor from the injection 
molding simulation provides eigenvectors and eigenvalues that locally describe the main direction of 
the fibers and their percentage in the respective directions. Therefore, a material model linking 
eigenvalues and angle-dependence is required. 
First, the different coordinate systems shown in Figure 3 must be explained. In the global FE-coordinate 
system (x,y,z) each element receives a local orientation coordinate system consisting of three 
eigenvectors (1,2,3) defined in the x,y,z-system. The 1-vector points in the direction in which the largest 
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percentage of fibers in the element is oriented. The eigenvalues (EV1,EV2,EV3) indicate the percentage 
of fiber in the respective directions of the 1,2,3-system and have the sum of 1. Now a homogenization 
takes place by forming the resulting vector p⃗⃗ hom in the 1,2,3-system with the three eigenvalues in order 
to consider fiber influences of all directions in the local element. The relative deviation of the 
homogenized vector to the local 1,2,3-system thus contains the information about the stiffness of the 
element. 
Figure 4 shows how to conclude an angle-dependent local element description from the deviation of 
p⃗ hom to the 1,2,3-system. Assuming that the eigenvalue 1 is equal to 1, the other eigenvalues have to 
be equal to 0. In this case, the homogenized vector points in the direction of the 1-axis and all fibers in 
the element are oriented in this direction. Thus, the element would have an ideal relative angle of 0°-
stiffness with all fibers in this direction, which corresponds to the ideal high stiffness of the 1-axis. If, on 
the other hand, the eigenvalues 2 or 3 are equal to 1, the homogenized vector would point in the 
corresponding direction. The stiffness of the local element relative to the 1-direction would thus have 
an ideal relative angle 90°-stiffness with all fibers in those directions, which therefore corresponds to 
the ideal low stiffness of the 2- and 3-axis. The real homogenized vector moves in between. By means 
of projection in the 12- and 13-plane, a relative deviation angle 𝜙 and 𝜃 from the 1-axis is obtained, 
which varies between 0° and 90°. 

 
Figure 3. Coordinate systems of a local macroscopic FE-element [37]. 

 
Figure 4. Local orientation projection into the 12- and 13-plane [37]. 

Therefore, the local stiffness in the 1,2,3-coordinate system in the 1-direction results from the relative 
deviation of 𝜙 and 𝜃 from the 1-axis with the storage modulus 𝐸′(𝜙) and 𝐸′(𝜃) taken from the angle-
dependent material card to 

𝐸1
′ =

𝐸′(𝜙)∙𝐸𝑉2+𝐸′(𝜃)∙𝐸𝑉3

𝐸𝑉2+𝐸𝑉3
. (5) 

The eigenvalues are used to allow a relative weighting of the fiber quantity for the respective direction. 
To calculate the stiffness in the 2- and 3-directions, the quadrants have to be switched and the 
homogenized vector has to be completed to a Cartesian coordinate system. Its projected angular 
deviation from the 2-axis and to the 3-axis results in the respective stiffness 

𝐸2
′ =

𝐸′(90°−𝜙)∙𝐸𝑉1+𝐸′(90°)∙𝐸𝑉3

𝐸𝑉1+𝐸𝑉3
. (6) 

𝐸3
′ =

𝐸′(90°)∙𝐸𝑉2+𝐸′(90°−𝜃)∙𝐸𝑉1

𝐸𝑉2+𝐸𝑉1
.  (7) 

Equations (5-7) can be used in the same way for the loss modulus. Thus, the complex orthotropic 
stiffness matrix can now be filled locally for the considered element: 
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, (8) 

where  

𝐷 = 1 − 𝜈12𝜈21 − 𝜈13𝜈31 − 𝜈23𝜈32 − 2𝜈21𝜈32𝜈13, (9) 
and 

𝜈𝑘𝑗 =
𝐸𝑘

∗

𝐸𝑗
∗ 𝜈𝑗𝑘 ; 𝑗, 𝑘 ≔ {1,2,3}. (10) 

The shear modulus in Equation (8) can be approximated in the form of: 
𝐺𝑗𝑘

∗ =
𝐸𝑗

∗𝐸𝑘
∗

𝐸𝑗
∗+2𝜈𝑗𝑘𝐸𝑗

∗+𝐸𝑘
∗ ; 𝑗, 𝑘 ≔ {1,2,3}, (11) 

described in detail in [38]. Finally, it must be transformed back into the global x, y, z-coordinate system 
with the coordinates of the eigenvectors in order to perform the FE-calculation. 
In order to be able to fill equations (5-7) with angle-dependent storage and loss modulus, a 
comprehensive material card is required. Therefore, cuboid specimens are cut out of a flat injection 
molded plate in different orientations relative to the flow direction, see Figure 5. 
However, the cutting direction has nothing to do with the fiber orientation angles required in the material 
model. To conclude from a cutting orientation to a fiber orientation, the real fiber composition of the 
specimens must be determined. The measured specimens have an averaged stiffness of all fiber 
orientation distributions that occur in them. It is assumed that the averaged deviation of all macroscopic 
elements of a specimen corresponds to the viscoelastic properties measured with it. To determine the 
correct averaged orientation angle, the material model must now be calculated backwards. To do this, 
the averaged absolute orientation direction in the global coordinate system is determined for each cut-
out specimen using the injection molding simulation of the plate from which the specimens are taken. 
These directions are shown as arrows in Figure 6 and differ slightly from each other. The angular 
deviation from their respective cutting orientation yields the averaged fiber orientation angle. It directly 
corresponds to the measured viscoelastic properties of the specimen. This is shown as an example in 
Figure 6 for the 45°-specimen. The determined averaged angles can now be used for inter- and 
extrapolation of the material card in the angular domain and thus in the FE-calculation. 

 
Figure 5. Preparation of test specimens (a. injection molded plate, b. cutting orientations, c. test 

specimens with specimen-adapter) [37]. 

 
Figure 6. Conclusion from a cutting orientation to an averaged fiber orientation [37]. 

a. b. c. 



A. Kriwet et al. / Engineering Modelling, Analysis and Simulation Vol. 1, Issue 1 (2024) 

 

7/14 
 

3 Results and Discussion 
For the investigations, polyamide 6.6 with 50 weight percent short glass fibers (PA66-GF50) is used. 
Within the scope of the comparison, on the one hand cuboid test specimens taken from injection molded 
specimen plates in different orientations to the direction of injection molding are used. On the other 
hand, a structural component of a powertrain is examined: a transmission bracket. Standard 
environmental condition is considered for both comparisons: Room temperature (23°C) and completely 
dry air at 0% relative humidity. 

3.1 Input data 
The necessary input data are limited to the injection molding process simulation of the specimen plate 
and the transmission bracket as well as the viscoelastic material data from the measurements. The 
injection molding process simulation is carried out with the software CADMOULD. Specimens at 
representative positions distributed over the specimen plate in the injection molding simulation are 
evaluated in comparison to micro-CT analysis of the real fiber orientation distribution. Thereby, the 
process simulation is optimized with respect to the fiber orientation. Subsequently, the calibrated 
injection molding model is used for both the specimen plate and the component. The characterization 
of the viscoelastic properties is carried out within a climatic chamber analogous to the experimental 
procedure in Figure 1. For the microscopic approach, specimens of the pure matrix material are 
examined. For the macroscopic approach, short fiber reinforced specimens are characterized at a total 
of four different angles to the injection molding direction of the specimen plate. 

3.2 Specimen 
The material models are compared by examining the specimen resonances through the whole 
frequency range. The stiffness is represented by the frequency position and the damping by the 
amplitude of the peak. The investigated specimens have a dimension of 140x15x2 mm, with 5 mm at 
one end representing the mounting and excitation area with a fixed-free boundary condition. The 
characterization of the dynamic behavior is conducted according to Figure 1 within a climatic chamber 
at constant environmental conditions. Excitation is performed by means of a shaker/stinger combination 
with direct measurement of the excitation force. The acceleration response is measured on the surface 
of the specimen. By normalizing the response with the excitation, a comparison by means of a 
frequency response function (FRF) between measurement and simulation is possible.  
The finite element (FE) model is built analogously to the experiment, see Figure 7. The specimen is 
meshed with C3D20-elements. To couple the full fiber orientation data of the injection molding 
simulation with the FE-model, ten layers within the thickness of the specimen are modelled with an 
element aspect ratio of 12,5. In total it takes 3360 elements and 16453 nodes for the specimen. 5 rows 
of nodes at one end, 53 nodes in total, define the boundary and excitation area. Subsequently the fiber 
orientation from the injection molding simulation is mapped onto the FE-Mesh by using the nearest 
neighbor method within the software CONVERSE 4.4.0.2. Each element receives a second-order 
orientation tensor for use in the microscopic and macroscopic model. 

 
Figure 7. Cuboid specimen, a. Specimen with characterization adapter, b. CAE-Model [37]. 

The FE-simulation takes place in the FE-solver ABAQUS using the UMAT-interface for the material 
models and a Direct-solution steady-state dynamic analysis in the respective frequency steps. Figure 
8 presents the results of the comparison between the measured and the simulated FRF of the 
microscopic and macroscopic approach are shown for four different specimen orientations (displayed 
in Figure 5). 
  

a. b. 
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Figure 8. Comparison of the macroscopic and the microscopic approach with measurements of 

different oriented cuboid specimens at 23°C and 0% humidity. 

On a global frequency scale, a good accuracy of both modeling techniques can be observed in 
comparison to the measurement. To point out the differences between the two methods, a closer 
evaluation of the resonance peaks is required. Therefore, the 5th and 6th superior resonances were 
investigated for each specimen orientation in more detail. Figure 9 shows the relative deviations of the 
microscopic and macroscopic model are similar for all specimen orientations. However, the global 
resonances of the microscopic model for the 0° and 30° specimen are at higher frequencies in 
comparison to the measurement, due to an increased stiffness. For the 45° and 90° specimen, the 
resonances are at lower frequencies, due to a decreased stiffness. The macroscopic approach instead 
shows lower resonance frequencies and therefore a lower stiffness prediction in all cases, except for 
the 45° orientation, where it is higher than the measurement. However, significant differences can be 
observed at the inferior resonances of the measurement in comparison to both simulations. An example 
for this is the small resonance peak of the microscopic model just below 5000 Hz for the 0° specimen 
or the resonance at 3300 Hz for the 45° specimen. These resonances cannot be observed in the 
measurement. This can be explained by the homogenization approach of the microscopic model. Here, 
an increased deviation of the local numerical fiber orientation of the process simulation occurs. This 
leads to an insufficient homogenization of the local stiffness. The macroscopic approach shows an 
improved prediction of the inferior resonances. The resonance at 2400 Hz and the twin-peak at 4000 
Hz of the 30° specimen are good examples. 
For the prediction of the superior resonance amplitudes, the micro- and macroscopic modeling 
approach only show minor differences. The microscopic model predicts consistently higher amplitudes. 
This is due to the homogenization approach. The damping of the matrix, fiber and matrix-fiber-
interphase are considered by the ARDI model, but further damping influences like composite 
inhomogeneities are not taken into account. The macroscopic approach, however, is better at predicting 
composite damping. This is due to the one-step homogenization with the directly measured values of 
the composite material. 
Figure 10 shows the FRF of the micro- and macroscopic model in comparison to an isotropic as well 
as a Full-Mori-Tanaka (FMT) modeling approach.  
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Figure 9. Zoom into the frequency range of the cuboid specimens, as an example the 5th and 6th 

resonance order are shown for each orientation. 

 
Figure 10. Zoom into the frequency range of the cuboid specimens, as an example the 5th and 6th 

resonance order are shown for each orientation. 
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For the isotropic model, the data sheet value of the tensile modulus is multiplied by a scaling factor of 
0,65 [1] and defined as a global stiffness value independent of direction. The FMT model is a two-step 
homogenization approach. A Mori & Tanaka modeling of the stiffness defines the first step and a 
reconstruction of discrete spatial material databases through the MEM defines the second step. As a 
common value, 1% modal damping is defined as material damping in both cases.  
The FRFs of the isotropic approach are identical in all orientation cases and are therefore not suited for 
predicting the structural dynamic behavior. The FMT approach shows an improved prediction of the 
FRFs with respect to the different orientations of the specimens. However, the predicted stiffness is 
higher in all orientation cases as well as in comparison to the micro- or macroscopic approach. This 
can be explained by a lack of calibration of the material properties, since only the tensile stiffness of the 
material data sheet is used. Furthermore, the damping at given temperature and humidity is 
overestimated with the defined value of 1% modal damping. The resonance peaks are lower compared 
to the measurement or the micro- or macroscopic approaches. Missing orientation dependence of the 
damping also becomes apparent when comparing 0° and 90° specimens. The methods and values 
used for stiffness and damping represent the quality of material data usually available in the industry. 

3.3 Component 
The transmission bracket in the left side of Figure 11 is a representative example for the application of 
the material models on component level. It is a thin-walled structure that exhibits both superior (global) 
and inferior (local) structural dynamic modes. The dimensions of the transmission bracket are approx. 
228x82x121 mm with a weight of 254 g. The structural dynamics are characterized inside a climatic 
chamber at constant ambient conditions. It is suspended in a freely supported state with temperature-
resistant aramid ropes at two points. Furthermore, it is excited by means of a shaker/stinger combination 
to determine the FRF, analogously to the procedure for the specimens. 

 
Figure 11.a. Transmission bracket, component, b. CAE-Model. 

The transmission bracket is modeled using C3D8 elements. To optimize the computational effort, only 
four elements across the overall wall thickness were defined for meshing. This leads to a reduction of 
the mapped fiber orientation data from the process simulation. However, the effect on the results is 
small at component level compared to the specimens. Thus, a total of 79635 elements and 137162 
nodes were used to model the transmission bracket, as shown in Figure 11.b. The structural dynamics 
simulation is performed with a direct-solution steady-state dynamic analysis using the UMAT interface 
of the ABAQUS 2017 solver. The measured FRF compared to the FRF of the micro- and macroscopic 
model is shown in Figure 12. 
The prediction quality of the resonance frequencies and therefore the stiffness by the micro- and 
macroscopic model are similar. The largest relative deviation in comparison to the measurement is 
seen at the superior resonance at 300 Hz. Comparable to the investigations on specimen level, the 
macroscopic model allows an improved prediction of the minor resonances on component level. As an 
example, the resonance peaks at 2200 Hz and 3700 Hz can be identified. However, a comparison of 
the damping is difficult, since the measurement shows high damping in the lower frequency range. This 
is caused by the experimental suspension, which influences the superior, global resonances of the 
bracket. In the frequency range of inferior, local resonances above 2000 Hz, a comparison of the 
amplitudes is however possible. In general, both approaches allow a good prediction of the overall 
amplitude. Similar to the results of the specimens, the damping of the microscopic model is lower 
compared to the macroscopic model. Larger deviations in comparison with the measurement can be 
attributed to excessive damping due to the suspension. 

a. b. 
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Figure 12. Comparison of the macroscopic and the microscopic approach with measurements of the 

transmission bracket at 23°C and 0% humidity. 

Figure 13 shows the FRF results of the simulations with isotropic and FMT model in the frequency range 
of inferior resonances. The composite stiffness is defined with the same approach as on specimen 
level. Furthermore, the modal damping is set to a value of 0.3% by iterative optimization for a better 
comparison with the measurement. 

 
Figure 13. Zoom into the frequency range of the transmission bracket and comparison with state-of-

the-art modeling using 0,3% modal damping. 

The isotropic approach predicts the composite stiffness and thus the resonance positions of the 
measured FRF with a higher accuracy compared to the FMT approach. The FMT again shows an 
increased composite stiffness by a shift of the resonances to higher frequencies. However, in 
comparison, it is apparent that the stiffness prediction deviates many times more than by the micro- or 
macroscopic approach. A prediction of the damping by the isotropic or FMT approach is still only 
possible with an accurate comparison with an experiment. 

4 Conclusions 
In this study, an advanced approach for characterizing and modeling the viscoelastic material behavior 
of short-fiber reinforced plastics for an accurate prediction of the structural dynamics behavior was 
presented. Therefore, a method for experimental flexural resonance characterization was presented. 
Thereby, a characterization of the viscoelastic material data of pure plastic matrix and fiber reinforced 
material in a wide frequency range is possible. Two advanced material modeling methods for 
homogenization of the composite stiffness and especially damping were presented: a two-step 
microscopic and a one-step macroscopic approach. These were compared with an isotropic approach 
as well as a micromechanical modeling by means of a Full Mori & Tanaka (FMT) model. In both cases, 
tensile modulus of material data sheets was used for the homogenization of the composite stiffness. 
Furthermore, modal damping was applied. To assess the prediction accuracy of the models, differently 
oriented specimens as well as a composite transmission bracket of a powertrain were investigated. The 
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structural dynamic behavior was compared by means of force-normalized frequency response functions 
of measurement and simulation. 
It was shown on specimen and component level, that the macroscopic approach provides a sufficient 
prediction of the resonance peaks of the superior and inferior structural dynamics. However, the effort 
required to determine the necessary material behavior is increased compared to the microscopic 
approach. Both show a similar prediction accuracy of stiffness and damping compared with the 
measurements. To achieve such a high prediction quality of the structural dynamics, both a high 
accuracy of the fiber orientation by the process simulation as well as a reliable experimental 
characterization of the frequency-dependent viscoelastic material behavior at defined ambient 
conditions is necessary. In comparison, neither the isotropic nor the FMT allows a comparable 
prediction accuracy of the structural dynamics. In particular, the damping cannot be estimated without 
an iterative optimization. 
It can be concluded, that for an initial estimation of the structural dynamics in an early development 
phase, the isotropic or FMT approach is sufficient. In an advanced development phase, in which the 
composite material is under development and an injection molding model based on a given geometry 
is available, the microscopic approach allows an improved prediction accuracy. In a late development 
phase, in which the composite material has already been determined, the macroscopic approach allows 
the highest prediction accuracy. 
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