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Abstract 

In modelling and simulation, approximations also known as metamodels, are commonly employed to 
approximate outcomes of complex simulations that are computationally intensive to evaluate. Various 
approximation techniques like response surface models, Kriging, radial basis functions, neural 
networks, etc. are utilized for surrogate modelling. These methods inherently rely on using a predefined 
dataset that forms the basis of training, validation and predictive capabilities of these surrogate models. 
Thus, the accuracy of these surrogate models is directly related to the quality of the underlying dataset 
used. Design of Experiments (DOE) methods are typically used to generate these datasets. The quality 
of the datasets is influenced by the choice of the DOE methods that are employed, as each DOE method 
uses a different strategy to sample the design space. Various sampling strategies like full factorial, 
fractional factorial, Latin hypercube sampling (LHS), Sobol sampling, etc. are available.  
This study examines the impact of three sampling techniques- full factorial, fractional factorial, and 
Sobol sequencing on the accuracy and efficiency of surrogate models created using radial basis 
functions (RBF) for a structural analysis use-case. 
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1 Introduction 
Surrogate models are often used in computational analysis to predict outcomes of computationally 
intensive problems. Surrogate models are used to map the design variables (inputs) to response 
variables (outputs) when the actual relationship between the two is unknown, not well understood, or 
computationally expensive to evaluate [1]. Full vehicle crash simulation is one such example. As the 
simulation itself is computationally very expensive; surrogate modeling provides an elegant and a much 
quicker approach to approximate simulation outcomes in such cases. The speed and accuracy of the 
surrogate models depend on several different factors such as the choice of approximation technique, 
sampling technique, sample size, etc.  
DOE sampling techniques are available to be employed for generating the datasets that form the basis 
of these surrogate models with each technique having its own strengths and weaknesses. Some of the 
common techniques used are Latin Hypercube, Full factorial, Fractional Factorial, Random Sampling, 
Sobol Sequencing, etc. [2] provides a state-of-the-art review on different approximation and DOE 
techniques available. 
While it seems logical that a sampling technique that explores the entire design space like the full 
factorial technique would provide better accuracy, but it would prove to be computationally very 
expensive especially for complex simulations. So, it is important to compare different sampling 
techniques to determine which method provides a good balance between accuracy and computational 
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expense. Three commonly used techniques are studied and compared in this paper and the following 
section provides a brief introduction of each of these three sampling techniques. 

1.1 Full Factorial 
In a full-factorial design, all combinations of all factors at all levels are evaluated. Typically, the standard 
engineering practice is to systematically evaluate a grid of points requiring n1×n2×n3×…ni (i = # factors, 
ni = # levels for factor i) design point evaluations. This practice provides extensive information for 
accurate estimation of factor and interaction effects. However, it is often deemed cost-prohibitive 
because of the number of analyses required [3] 

1.2 Fractional Factorial 
A fractional factorial experiment is a certain fractional subset (1/2, 1/4, 1/8, etc. for two-level factors and 
1/3, 1/9, 1/27, etc. for three-level factors) of the full factorial experiment that is carefully selected to 
minimize aberrations in the experiment. Fractional factorial designs are available only when all factors 
have either two or three levels. Fractional factorial experiments are also useful when some factors are 
independent of each other or when certain interactions can be neglected [3]. 

1.3 Sobol Sequences 
The Sobol sequence provides a space-filling collection of points that are highly uniform in their spacing, 
as defined by measures of discrepancy. The uniformity of this technique generally improves on that of 
the Latin Hypercube technique, with similar cost in generation time [3]. 
Figure 1 shows a comparison of the above three sampling techniques for 2 factors with factor1 sampled 
at 3 levels and factor2 sampled at 4 levels. 

 
Figure 1. Design space for DOE sampled with different techniques. 

2 Materials and Methods 
The accuracy of surrogate models improves with sampling methods that provide better space coverage 
of the design space. This means that the accuracy will generally improve with increase in number of 
sampling points [4]. However, the number of sampling points considered is constrained by the maximum 
number of simulations that can be feasibly performed, given the available time and computational 
resources. So, the need for more sampling points and available computational resources need to be 
carefully balanced [5]. This balance needs to ensure that the surrogate model is both comprehensive 
enough to capture key system behaviors and efficient to avoid exceeding practical limits of the compute 
resources. 
To understand the impact of different sampling strategies and sampling sizes on the accuracy of the 
surrogate models, a simple I-beam example as shown in Figure 2. is considered. A baseline finite 
element analysis (FEA) of an I-Beam is setup using Dassault Systemes’ 3DExperience software. A steel 
I-Beam (3000 mm) in length is fixed at one end and acted upon by a pressure load of 0.01 MPa on the 
top face as shown in Figure 3. Table 1-3 show the details of the Finite Element Model. 
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Figure 2. Cantilever I-Beam. 

Table 1. Details of the Finite Element Model. 
Parameter Value 

Element Type C3D10HS* 
Number of Nodes 70204 

Number of Elements 37679 
Material Model Isotropic Elasticity 

*10 node general purpose quadratic tetrahedron elements with improved surface stress visualization. 

Table 2. Material Properties. 
Parameter Value 

Density 7.8e-9 tonne/mm3 
Young’s modulus 2e5 MPa 

Poisson’s ratio 0.27 

Table 3. Mesh Quality Statistics 
Parameter Value 

Aspect Ratio 1.696 
Nodes Jacobian 0.947 
Maximal Angle 97.964 
Minimal Angle 45.306 

Modified Jacobian 0.219 
Skewness 0.622 

Stretch 0.665 

  

Figure 3. FEA Setup of I-Beam a. I-section dimensions and b. Boundary conditions. 

Vertical beam deflection and Von Mises stress at the midspan (𝑥 = 1500	𝑚𝑚) are monitored as the 
main responses. Figure 4 shows the outputs for the baseline simulation. The baseline simulation results 
are validated by comparing them to the analytical solution as discussed in Section 3. 

a. b. 
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Figure 4. Vertical Deflection and Von Mises Stress at the midspan for baseline simulation. 

The baseline simulation is parametrized by creating geometric parameters for the I-Beam cross section 
and these geometric parameters are used as the DOE inputs. Simulation result sensors are created to 
monitor key simulation outputs which are used as the DOE responses. Using the parametrized baseline 
model, multiple DOE studies are developed. Figure 5 shows a schematic for a DOE running multiple I-
Beam simulation experiments. Each DOE uses a different sampling technique. Geometric parameters 
of the beam are iteratively varied, and corresponding outputs are monitored. For an effective 
comparison of the three sampling techniques, it is essential that all three algorithms sample the same 
design space. This can be achieved by constraining the design space using appropriate bounds on the 
input parameters. Each parameter is varied within these bounds of the design space. 

 
Figure 5. Schematic of DOE running iterative I-Beam simulations. 
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Table 4 summarizes the input parameters with their corresponding bounds and the output parameters 
for the DOE. 

Table 4. DOE Parameter table. 
Parameter Type Lower Bound (mm) Upper Bound (mm) 

Beam_Height Input 70 100 
Beam_Width Input 35 50 

Flange_Thickness Input 14 20 
Web_Thickness Input 14 20 

U3 Output - - 
VM Output - - 

 
Three DOEs are run with each DOE using four inputs and two responses and a different sampling 
technique. The first DOE is run using a full factorial technique in which the four inputs are evaluated at 
three levels. This creates a total of 3! = 81 simulations. Although this technique samples the design 
space thoroughly, it is computationally very intensive. Table 5 shows the DOE configuration using full 
factorial sampling. 

Table 5. DOE configuration using full factorial sampling. 
Parameter Lower Bound (mm) Upper Bound (mm) Levels (mm) 

Beam_Height 70 100 70, 85, 100 
Beam_Width 35 50 35,42.5, 50 

Flange_Thickness 14 20 14,17, 20 
Web_Thickness 14 20 14,17,20 

 
The second DOE is run using a fractional factorial technique in which the four inputs are evaluated at 
three levels each. This creates a total of "

#
(3!) = 27 simulations. The design space bounds are 

maintained so that the same design space is sampled with 27 experiment points. Table 6 shows the 
DOE configuration using fractional factorial sampling. 

Table 6. DOE configuration using Fractional Factorial sampling, 
Parameter Lower Bound (mm) Upper Bound (mm) Levels (mm) 

Beam_Height 70 100 70, 85, 100 
Beam_Width 35 50 35,42.5, 50 
Flange_Thickness 14 20 14,17, 20 
Web_Thickness 14 20 14,17, 20 

 
A third DOE is run using a space filling Sobol sequence technique with the 4 inputs varied within the 
same bounds of the design space such that it creates a total of 27 simulations; exactly equal to the 
number of simulations run using the fractional factorial technique. Sobol technique provides a sequence 
of factor levels based on a deterministic, quasi-random algorithm [3]. In this paper, it is forced to 
generate 27 points to ensure a direct comparison of its performance with the fractional factorial 
technique. 
Sobol sampling technique needs a user to define the number of corner points and interior points. Interior 
Points fall within the bounds of the design space whereas corner points lie on corners of the design 
space. This provides a uniform distribution of points within the design space and also considers the 
boundaries of the design space. The effect of changing the distribution of corner points and interior 
points is out of the scope of this paper, but it seems logical to assume that this distribution will affect 
the efficiency of sampling the design space. Table 7 shows the DOE configuration using Sobol 
sampling. 

Table 7. DOE configuration using Sobol Sequencing sampling. 
Parameter Lower Bound (mm) Upper Bound (mm) 

Beam_Height 70 100 
Beam_Width 35 50 
Flange_Thickness 14 20 
Web_Thickness 14 20 
Number of Corner points 8 
Number of Interior points 19 
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Each DOE generates a dataset with beam height, beam width, flange thickness and web thickness as 
inputs and corresponding deflection and Von Mises stress at the midspan as outputs. Each row in this 
dataset is called a data point or an experiment point.  
Table 8 summarizes the normalized computational times for data generation for all three DOEs. It can 
be clearly seen that data generation for full factorial DOE is at least three times more expensive as 
compared to fractional factorial or Sobol sequence techniques. 

Table 8. Comparison of compute times for data generation for all three DOE techniques 
DOE Technique Normalized computational time 

Full Factorial 1 
Fractional Factorial 0.33 

Sobol Sequence 0.33 
Each of the three datasets is then used to create a surrogate model through training and cross 
validation. Radial Basis Function Neural Network (RBF-NN) is used for surrogate modeling. RBF-NN is 
a feed-forward neural network consisting of three layers: one input layer, one hidden layer of radial 
units, and one output layer of linear units. As RBF-NNs use only three layers, they are reasonably 
compact and are characterized by reasonably fast training [3]. A detailed explanation of RBF-NN is 
provided in [6]. Cross validation and error measures for the RBF-NN surrogate model are discussed in 
Section 3.  

3 Verification and Validation 
The baseline simulation is verified by comparing it to the analytical solution. For this, the vertical 
deflection and Von Mises stress from the baseline simulation are plotted as a function of distance from 
the fixed end of the cantilever beam. These quantities are then compared to the corresponding 
analytical values given by the following equations [7]: 

𝛿! =
𝑃𝑏𝑥"

24𝐸𝐼
(𝑥" + 6𝐿" − 4𝐿𝑥),	 (1) 

𝜎! =
𝑃𝑏ℎ(𝐿 − 𝑥)"

4𝐼 	,	 (2) 

where,𝛿$ is the vertical deflection of the beam at a distance 𝑥 from the fixed end, 𝜎$ is the bending 
stress at a distance 𝑥 from the fixed end, 𝑃 is the pressure acting on the beam, 𝑏 is the width of the 
cantilever beam, 𝐿 is the length of the cantilever beam, ℎ is the beam height, 𝐸 is the Young’s modulus, 
and 𝐼 is the moment of Inertia of the beam cross section. 
Figure 6 shows that the baseline simulation predicts the response of the cantilever beam accurately 
except for the stress response at the fixed end. This is due to the constrained boundary conditions at 
the fixed end. This outlier result value at the fixed end does not affect the validity of the DOEs or the 
surrogate models. This is because the DOE and the surrogate models use only the deflection and 
stresses at the midspan of the cantilever beam. As this simulation is considered as the baseline for 
DOEs, no further validation is performed. 

  
Figure 6. Comparison of baseline simulation results with analytical results. 
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3.1 Cross-validation of RBF-NN surrogate models 
For validating the accuracy of the RBF-NN surrogate model, the Leave One Out Cross Validation (LOO-
CV) is used. LOO-CV is an exhaustive cross-validation method in which the original sample is divided 
into a training and a validation set. The user specifies the size of the validation set. With each iteration, 
one point out of the validation set is left out and the remaining points are added back to the training set. 
Training is run using all, but the one left out point which is used for validation after the training. This is 
repeated until all the data points in the validation set have been validated [8]. In this specific paper, all 
the experiment points are used for cross-validation which means full factorial DOE uses 81 points and 
fractional factorial and Sobol each use 27 points for cross-validation. Error metrics are computed and 
compared for each machine learning model. The following error metrics as explained in [9] are used. 

3.1.1 Average Error (Normalized) 
For every point in the validation set, the differences between the actual and predicted values are 
averaged and then normalized by the range of the actual values for each response.  

𝐸𝑟𝑟𝑜𝑟#$%
&'() =

𝐴𝑣𝑔[𝐴𝐵𝑆(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)]
𝐴𝑐𝑡𝑢𝑎𝑙)*! − 𝐴𝑐𝑡𝑢𝑎𝑙)+,

	 (3) 

3.2 R2 value 
The coefficient of determination is calculated based on the error samples. The coefficient of 
determination always ranges between 0 and 1, where 1 represents a perfect fit (or no prediction error): 

𝑅" = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇𝑂𝑇𝐴𝐿 (4) 

where 

𝑆𝑆𝑅 = I(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)"
,

-./

, (5) 

and 

𝑆𝑆𝑇𝑂𝑇𝐴𝐿 =:(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐴𝑉𝐺(𝐴𝑐𝑡𝑢𝑎𝑙))%
&

'("

, (6) 

where n is the number of points, SSR is the sum of the squared residues, and SSTOTAL is the total 
sum of squares. 
Table 9 summarizes the normalized computational times for training and cross-validation of all three 
RBF-NN surrogate models. It can be clearly seen that compute times for training and cross validation 
for full factorial DOE is at least twelve times more expensive as compared to fractional factorial or Sobol 
sequence techniques. 

Table 9. Normalized computational times for training and cross-validation. 
RBF-NN model sampling Normalized computational time 

Full Factorial 1 
Fractional Factorial 0.0833 

Sobol Sequence 0.0833 
 
Figures 7, 8 and 9 show the validation error plots for vertical deflection and Von Mises stress for the 
surrogate models trained using data from full factorial, fractional factorial and Sobol sequencing 
sampling techniques respectively. 
Table 10 summarizes the validation errors in terms of R2 fits of all three surrogate models for both the 
responses. It is evident that the model for dataset sampled with full factorial method gives the best fit 
in terms of R2 as well as a very low error. While both the models for datasets sampled using fractional 
factorial technique and Sobol sequencing technique provide a very good fit in terms of R2 values, the 
model for dataset sampled using Sobol sequencing technique provides better accuracy than that 
sampled using the fractional factorial technique with a mean error of 0.0204 for the Von Mises stress 
and 0.0248 for deflection. 
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Figure 7. Actual vs Predicted plots using Full Factorial sampling. 

  
Figure 8. Actual vs Predicted plots using Fractional Factorial sampling. 

  
Figure 9. Actual vs Predicted plots using Sobol Sequencing sampling. 

Table 10. Summary table comparing fit quality and error metrics across all datasets. 
 Von Mises Stress Deflection 

Model R2 Avg Error R2 Avg Error 
RBF with Full Factorial sampling 1 0.0053 1 0.0058 

RBF with Fractional Factorial sampling 0.98 0.0378 0.98 0.0509 
RBF with Sobol Sequence sampling 0.99 0.0204 0.99 0.0248 
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3.3 Validation of RBF-NN models using unseen data points 
Further validation on the accuracy of all three surrogate models is performed using 25, randomly 
generated, unseen points within the bounds of the design space. Unseen data points are those which 
have not been used for training of the RBF-NN models. Using unseen data points provides qualitative 
indication on the predictive capabilities of the surrogate models. Table 11 summarizes the error 
metrics for the unseen data points for all three surrogate models. 

Table 11. Error metrics for unseen data points 
 Von Mises Stress Deflection 

Model R2  Avg Error R2 Avg Error 
RBF with Full Factorial sampling 1 0.004 0.998 0.011 

RBF with Fractional Factorial sampling 0.997 0.013 0.994 0.020 
RBF with Sobol Sequence sampling 0.999 0.007 0.97 0.011 

 
Trends from error metrics for unseen data points are very similar to the trends observed from the cross-
validation errors. While the surrogate model from full factorial sampling provides the most accurate 
prediction, surrogate model from Sobol sequence provides marginally better accuracy compared to that 
of the fractional factorial surrogate model. 

4 Conclusions 
Surrogate models provide an advantage in terms of computational speed for use-cases which would 
otherwise be computationally time intensive. The approximate nature of the surrogate models warrants 
a strategic choice of the underlying training dataset. Although a dataset that covers the sample space 
better will typically provide better accuracy but larger datasets are computationally expensive to 
generate, train and validate. So, the computational expense associated with dataset generation, training 
and validation and the accuracy that the model provides need to be well balanced. This balance can 
depend on the choice of sampling strategy used in the dataset generation. This paper compares three 
different sampling methods for predicting the structural responses of a simple cantilever I-Beam use 
case. It can be readily seen that the full factorial method, which provides a very good coverage of the 
design space also provides a very good accuracy but needs 81 simulations to be run for generating the 
training dataset. Fractional factorial sampling only needs 27 simulations to provide sufficient accuracy 
in predicting the structural responses. Sobol sequencing method with equal number of data points 
provides better accuracy in predicting the structural responses when compared to the fractional factorial 
method. Therefore, out of the three techniques chosen to be investigated as a part of this paper, Sobol 
sequencing seems to provide for the delicate balance between accuracy and computational expense. 
This can be attributed to the uniform coverage of the design space achieved using the Sobol sequencing 
method which reduces the chances of gaps and clusters in the sampled points resulting in a 
comprehensive sampling. 
Although this paper uses a simple cantilever I-Beam example to compare three sampling techniques, 
the conclusions are broadly scalable to more complex structures. Even for complex structures with 
more inputs and responses, the accuracy of the surrogate models will be driven by how effectively the 
design space has been sampled. An exhaustive sampling like full factorial will involve more experiment 
points and will add to the computational expense for building the dataset, training and validation. A 
space filling method like Sobol sequencing will provide a collection of experiment points that are highly 
uniform in their spacing, effectively providing a good coverage of the design space at a fractional 
computational expense for dataset generation, training and validation.  
Further, as the problem size and complexity increases, it would become important to study the effect of 
variation of important parameters in Sobol sequencing technique itself. For example, the effect of 
distribution of corner points and interior points, the effect of reducing or increasing the number of Sobol 
points and the step size used in Sobol sequence generation needs to be studied. 
Although the conclusion on sampling technique is broadly scalable for complex structures, further 
research is needed to verify the effectiveness of the RBF-NN as a choice of surrogate model to 
accurately predict structural responses addressing material, geometric and boundary nonlinearities in 
more complex use cases. 
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