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Abstract 

In this contribution, the simulation-based digital twin of a high-speed turbomachine, i.e. a fan with a 
nominal speed of 16500 rpm, that has been developed for the aerospace industry with multiple uses in 
various platforms, and the corresponding findings are presented. The relevant simulation-based digital 
twin is created by first running various multi-physics engineering simulations, i.e. computational solid 
mechanics, computational fluid dynamics, and low-frequency electromagnetic analyses with Ansys 
software. Subsequent dynamic reduced order models (ROM) are formed and integrated together to 
create the digital twin that are bidirectionally connected with the asset. The digital twin is also validated 
via experimental data that are obtained with various setups for several parameters read at discrete 
locations via sensors, based on fidelity comparisons both between experiments and simulations, and 
between simulations and ROMs. Several operational scenarios including those with stress tests are run 
and the asset is checked against fatigue and thermal requirements for the rotor-stator assembly and 
the motor circuit respectively. This is done with an inhouse program that incrementally reads time, 
temperature, and rotational speed data and in which the relevant fatigue and thermal criteria are 
defined. This program is also used to simulate and analyse what-if scenarios. It is seen that vibration 
fatigue dominates all possible sources of failure in most cases. As a novel aspect, the fatigue induced 
by starts and stops of the fan is expressed as equivalent operating hours (EOH) depending on time and 
temperature parameters of the corresponding scenarios, as opposed to be taken as a constant value 
for all scenarios. Using this novelty, it is also conceptually demonstrated that simulation-based digital 
twins can play a significant role in operation and maintenance (O&M) when combined with conventional 
data-driven predictive maintenance techniques, not only for O&M teams but also asset owners and 
original equipment manufacturers (OEMs) particularly with the use of what-if analyses. Approaches to 
simulation-based digital twins in context with multi-physics and ROM fidelity are also discussed based 
on several digital twin maturity models. 

Keywords 

turbomachinery, digital twins, ROM, multiphysics, failure, condition monitoring, FEA 
 

© 2023 The Authors. Published by NAFEMS Ltd. 
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 
Peer-review under responsibility of the NAFEMS EMAS Editorial Team.  

 

1 Introduction 
Advancing technology, competition, and specialization drives our modern world and products evolve 
into cyber-physical systems (CPS) with mechanical, electrical, and software components [1]. This ever-
growing complexity is further enriched with the inclusion of digital twins based on internet of things (IoT), 
Industry 4.0, smart systems [2]. There are many definitions of digital twins, but the most general 
definition can be quoted as “a live digital coupling of the state of a physical asset or process to a virtual 
representation with a functional output” ([3], [4]). It can also be fundamentally defined as a digital 
representation of a product or a process (physical twin – PT), synchronized at a certain fidelity and 
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frequency, as a part of a CPS [5]. Digital twins are being used in many industries already, including 
manufacturing ([6], [7]), energy ([8], [9]), construction [10], aerospace ([11], [12]), and many others, 
specifically for condition monitoring and predictive maintenance ([13]-[15]). 
Together with the conventional data-based approach, simulation-based digital twin technology allows 
detection of problems that may occur in components, testing existing or new configurations, creating 
and perform what-if analyses. Embedded in the relevant asset or run in a cloud-based environment, 
engineering simulation software can model the life cycle of the asset based on engineering physics. 
Since real-time mimicking of the conditions by the relevant software requires major computer resources, 
the related operations are performed with reduced order models (ROM). 
The aim of this study is to quantitatively identify predictive maintenance metrics and the impact of start 
and stops of a turbomachine, one of the major type of machines for which digital twins are being studied. 
Along with the standard mean time to failure (MTTF) metric, another quantity for starts and stops is 
expressed in terms of the equivalent operating hours (EOH). Starts and stops are assumed to induce 
fatigue on a machine, as if the machine runs over a time that is equal to EOH, which is an important 
metric upon which turbomachines’ performance characteristics are quantified. OEMs have different 
numerical representation schemes, but a generic EOH vs performance degradation curve is as given 
in Figure 1 (performance degradation in efficiency and power of the turbomachine). An avionics cooling 
fan is selected for this purpose and the simulation-based digital twin is created using engineering 
simulations. 
The study also involves the use of an existing IoT software and platform, along with configuration of 
this platform’s input-output connections to and from sensors-actuators deployed on the fan, as well as 
development of an inhouse program. However, most of the details of these are left out to focus more 
on the use of engineering simulations in digital twins. For this purpose, Section 2 includes system 
modelling and Section 3 contains detailed information about individual simulations. Section 4 concludes 
the paper with results, remarks, and ideas for future studies. 

 
Figure 1. A generic EOH vs performance (degradation) curve. 

2 Modelling 
The fan is exposed to many extreme and variable loads and conditions throughout its life cycle. High 
and/or variable fluid velocity, temperature and pressure, structural strains and stresses, electrical losses 
and thermal effects related to them are the most important ones. Since the effect of starts and stops 
are of concern, shock loads or reaction forces due to aircraft manoeuvres have not been considered. 
As a result of analyses of requirements, experimental setup and geometry limitations of the fan, the 
variables and physics as depicted in Figure 2 have been included in the scope of the study. Herein 
each neural network in fact represents the dynamic ROM of the relevant engineering simulation 
(computational fluid dynamics – CFD, computational solid mechanics – CSM, electromagnetic analyses 
– EMA), formed by Ansys Twin Builder. 
The inputs of the system consist of rotational speed ω, ambient air density ρ, ambient air temperature 
T0, volumetric flow rate Q, vibration acceleration a. These are also parameters read during operation of 
the fan and fed into the system to simulate interim parameters as current I, voltage V, differential 
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pressure ΔP, air temperature of the fan outlet T1, and electrical losses 𝑬̇. There are in turn two output 
parameters as equivalent stress σ of the stator-rotor assembly that is used for assessing vibration 
fatigue and temperature difference ΔT of the motor that is used for checking relevant thermal 
requirements. 

 
Figure 2. System simulation model indicating the parameters and engineering physics considered in 

the digital twin. 

3 Engineering Simulations 
Ansys simulation software, namely Fluent for CFD, Mechanical for CSM, and Maxwell for EMA are 
selected in line with Ansys Twin Builder. Geometry cleaning before relevant simulations is performed 
via Ansys SpaceClaim. 
The nominal rotational speed of the fan is 16500 rpm which represents the highest speed in a 
turbomachine of which a digital twin is being created, according to the best knowledge of the authors. 
Hence the fidelity of the CFD simulation is also of concern. To tackle this issue, the experimental setup 
that is depicted in Figure 3 is made use of. The setup consists of four chambers separated by two 
perforated plates and a nozzle per the relevant standard [16]. The CFD model of the fan is first created 
for this setup for various conditions given in Figure 4 and relevant comparisons are made. between 
simulation results and experimental data, as depicted in Figure 5. 
A mesh sensitivity analysis is also performed that yielded a mesh with 10.1 million elements is 
satisfactory to mimic the behaviour of the fan in almost all flow conditions, with an average compatibility 
of 95%. This is per arithmetic average of differences of volumetric flow rate values (y-axis of Figure 5) 
based on different number of differential pressure values (x-axis of Figure 5). The results with different 
mesh sizes and different data points are as presented in Table 1. 
To assess MTTF and EOH metrics based on equivalent stress σ, 1-way CFD and CSM analyses of the 
rotor are performed. For CFD side the fan is modelled on its operating environment based on different 
boundary conditions for rotational speed ω, ambient air density ρ, ambient air temperature T0, 
volumetric flow rate Q. The relevant parameter set is given in Table 2. All the variations correspond to 
1485 different combinations of boundary conditions, for which differential pressure ΔP and air 
temperature of the fan outlet T1 are found and passed on to CSM analyses. Pressure contours for one 
of the combinations are as depicted in Figure 6. 
CSM analyses for the fan include the addition of vibration acceleration a. Since every imbalance 
induced by many factors (crack, mass imbalance, deformation, and so on) can lead to vibration and 
such imbalances are very hard to detect or simulate for every possible combination, vibration 
acceleration is imposed as a generic boundary condition on horizontal x-axis of the fan. Relevant values 
and dynamic responses are based on both experimental findings and operational expectations, as given 
in Table 3. The addition of five different parameters for the vibration acceleration with the previous 1485 
combinations hence lead to 7425 different combinations for equivalent stresses σ. 
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To assess failure condition caused by vibration fatigue, the CSM analyses are performed with power 
spectral density (PSD) method for vibration accelerations and corresponding equivalent stress values 
are interpreted using the three-band technique using Miner’s cumulative damage ratio [17]. Herein the 
vibrations induced are formed for start to maximum rotational speed based on experiments. The 
maximum amplitudes of accelerations are imposed on resonance points. The equivalent stresses are 
then found for respective standard variations. Equivalent stress corresponding to one standard 
deviation for a sample combination is as depicted in Figure 7. 
To assess failure condition caused by thermal stresses, relevant temperature change requirement 
recommended by the printed circuit board (PCB) manufacturer is followed, with a separate EMA and 
CFD analyses workflow as depicted in Figure 2. Herein the most important criterion is defined as the 
temperature difference ΔT for the motor. The relevant structure of the motor and the driver circuit is 
depicted in Figure 8 with the corresponding torque and current values and respective response surfaces 
are given in Figure 9. 
After all analyses given in Figure 2 are run at values that are distributed over operation regime and 
relevant dynamic ROMs are generated, these values are transferred to a program as the “data lake” of 
the simulation outputs. This program, developed inhouse, then uses the above-mentioned three-band 
technique and Miner’s cumulative damage rule along with the relevant temperature changes, and 
temperature change gradients. When a certain operation profile is loaded, relevant failure conditions 
can be checked using the abovementioned techniques and corresponding algorithms, and relevant 
MTTF values along with the EOH impact of starts and stops can be found, as detailed in Section 4. 

Table 1. Average compatibilities between experimental data and simulation results based on mesh 
size. (Relevant data points on x axis are given in Figure 5.) 

Mesh size 3 data points 5 data points 11 data points 21 data points 

[106] (x = 25, 150, 275 
cfm) 

(x = 50, 100, 150, 
200, 250 cfm) 

(x = 25, 50, … 250, 
275 cfm) 

(x = 25, 37.5, … 
262.5, 275 cfm) 

1.1 % 62.1 % 64.5 % 66.4 % 67.5 

2.2 % 68.5 % 69.5 % 70.1 % 70.2 
3.0 % 78.7 % 79.1 % 80.1 % 80.3 
5.8 % 83.6 % 84.1 % 84.3 % 84.5 
7.6 % 85.4 % 91.3 % 94.7 % 96.2 
10.1 % 88.7 % 93.2 % 95.1 % 96.8 
13.2 % 89.0 % 93.4 % 95.3 % 97.1 
16.4 % 89.2 % 93.5 % 95.5 % 97.3 

Table 2. Parameter set for CFD analyses for the rotor. 
Ambient air density, ρ 

[g/m3] 
Ambient air temperature, 

𝑻0 [oC] Rotational speed, 𝝎 [rpm] Volumetric flow rate, 𝑸 
[cfm] 

0.985 
0.945 
1.005 
1.065 
1.125 

-55 
-40 
-25 
-10 
+5 
+20 
+35 
+50 
+70 

15600 
16050 
16500 

 

25 
50 
75 
100 
125 
150 
175 
200 
225 
250 
275 
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Table 3. Parameter set for CSM analyses for the rotor. 
Rotational speed, 𝝎 | frequency, f  Max acceleration, 𝒂 [g] 

15600 rpm = 260 Hz 
16050 rpm = 267.5 Hz 
16500 rpm = 275.0 Hz 

0.05 
0.15 
0.25 
0.50 
1.00 

 

 
Figure 3. Experimental setup (left) and relevant CAD model (right). 

 
Figure 4. Experimental setup CFD model. 

 
Figure 5. Experimental data vs simulation results for 10.1 million cells. 
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Figure 6. Pressure contours for ρ = 1.005 g/m3, 𝑻𝟎 = 20 oC, 𝝎 = 16500 rpm, 𝑸 = 175 cfm. 

 
Figure 7. Equivalent stress at one standard deviation for ρ = 1.005 g/m3, 𝑻𝟎 = 20 oC, 𝝎 = 16500 rpm, 

𝑸 = 175 cfm, and a = 0.05 g. 

 
Figure 8. Motor structure (left) and relevant driver circuit model (right). 

 
Figure 9. Analysis results for torque (top left) and current (top right) and corresponding response 

surfaces for torque (bottom left) and current (bottom right). 
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4 Results and Discussion 
To demonstrate numerical results three representative operation scenarios with varying temperature 
profiles over time are selected as depicted in Figure 10. Herein black vertical lines indicate starts and 
grey vertical lines indicate stops. The profiles are repeated at the end of the depicted times in minutes. 
As seen, Scenario 1 contains a relatively regular profile whereas Scenario 3 is filled with starts and 
stops with higher temperature gradients. The resulting MTTF and average EOH values for all relevant 
starts and stops are presented in Table 2. As expected, Scenario 3 yields the maximum EOH’s and 
correspondingly the minimum MTTF value, in contrast to those in Scenario 1, where Scenario 2 yields 
the results in between. 
This suggests that, with this concept, 

- the effect of starts and stops to fatigue can be quantitatively described, at least relative to 
each other based on different operation regimes, 

- operation and maintenance (O&M) teams can  
- foresee overhaul/repair/maintenance periods, 
- operate the assets healthier in a more durable fashion based on EOH vs performance curves, 
- asset owners and OEMs can also perform what-if analyses for various operation profiles and 

foresee the overhaul/repair/maintenance periods. 

Considering the nature of the use and the reliance on engineering simulations, the place and evolution 
of the digital twin in respective maturity models is of crucial concern. Using maturity models as a self-
assessment tool about the current situation and the future of the digital twin, respective referenced 
models are studied [18]. In terms of engineering simulations, its effect on various modelling dimensions 
is best captured in “digital twin 8-dimension model” [1]. Herein the effect of several design elements is 
also reflected on dimensions that help evaluating the maturity. It is revealed that the digital modelling 
element consisting of CAD models, CAE models, algebraic models, numerical models, and statistical 
models are the most important element considering all dimensions. These models also essentially 
required for integration breadth, CPS intelligence, simulation capabilities, digital model richness, and 
life cycle. 
The engineering analyses for creating the digital twin contain CAD, CAE, and numerical models, 
whereas ROMs are essentially algebraic models of these simulations. The program developed inhouse 
also make use of algebraic and statistical models. Hence fidelity should be given attention separately. 
The fidelity of a digital twin represents the similarity per its physical twin based on both state and 
behaviour, analyzing the influence of abstraction and resolution [19]. Currently, state-based fidelities 
for models leading to vibration fatigue prediction given in Figure 2 are found as given in Table 5. Future 
work involves quantifying fidelity based on behaviour using Needleman-Wunsch (NW) algorithm and to 
create federated multi-fidelity models based on various conditions. Multi-fidelity models can help 
regarding the domain of concern (motor, rotor, fan, and so on) and relevant physics. It is then possible 
to switch between twin models based on the criticality of the equipment. 
This study also includes the turbomachine with the highest rotational speed of which a digital twin is 
studied, according to the best knowledge of the authors. In the future a larger turbomachine with a lower 
rotational speed (e.g. gas turbine, wind turbine) is aimed to be studied. Since one of the major validation 
points is in fact the point/time of repair/failure of the equipment, access to O&M data is also going to be 
a major criterion for future studies. 

 
Figure 10. Scenario 1 (left), Scenario 2 (middle), and Scenario 3 (right) as representative operation 

scenarios (temperature vs time). 
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Table 4. MTTF and EOH for start and stops for the representative scenarios. 
 Scenario 1 Scenario 2 Scenario 3 

MTTF 14384 12145 8679 
EOH – start 4.2 5.1 6.3 
EOH – stop 3.5 3.6 4.1 

Table 5. Relevant state-based fidelity values and corresponding approach 
Model Type Method Fidelity 

Rotor_CFD Experiment-simulation Per Table 1 95% 
Rotor_CFD Simulation-ROM Relative accuracy [20] 95% 

Fan_CSM Experiment-simulation N/A due to the lack of access to 
O&M data N/A 

Fan_CSM Simulation-ROM Relative accuracy [20] 95% 

Motor_EMA Experiment-simulation 
Simulation compared to test 
values for torque, current, and 
power 

95% 

Motor_EMA Simulation-ROM Relative accuracy [20] 95% 
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